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CHAPTER 1 

INTRODUCTION 

This research investigates methods for estimating 

the position of a moving source by the processing of an 

acoustically radiated signal received at two or more 

physically separated sensors.  If the source signal 

is received at two geographical positions in the presence 

of uncorrelated noise, then, depending on the signal 

strength and duration, it is possible to estimate the 

bearing to the source relative to the sensor baseline. 

When the source signal is received at three sensors, 

range, as well as bearing to the source, can be estimated 

by using the intersection of two bearing lines of position 

(LOPs).  The mathematics for the solution to the problem 

of finding the "best" estimate of bearing is analogous 

to the more g,»n?ral problem of estimating the time delay 

(or group delay) between two time series.  Therefore, 

this dissertation derives the maximum likelihood (ML) 

estimate time delay. 

Techniques for estimation of time delay can be 

applied to a variety of practical problems, in addition 

to those motivating this research.  For example, if we 

consider a signal which probes a linear time invariant 

1 



system, then the problem of estimating time delay can 

be viewed as attempting to identify a parameter of the 

probed system, based on time-limited, noise-corrupted 

observations of the system input and output. The delay 

is a particularly valuable characterization of the system 

(and interrelationship between two processes) when the 

system output is an attenuated and delayed version of the 

input. Physical plants in which delays occur can also be 

visualized in terms of the bearing estimation problem. 

For example, consider two geographically separated 

sensors that receive a signal from an acoustically 

radiating point source, as shown in Figure 1-1.  If 

the properties of the medium are such that the signal 

from the source propagates at a constant velocity, then 

the travel time from the source to either sensor is 

directly proportional to the distance traveled.  Thus, 

the difference between the travel time (from the source 

to each sensor) or time delay is given by the difference 

in path lengths divided by the propagation velocity. 

There exists a well defined locus of points (relative to 

the sensors) for which the time delay is constant.  Hence, 

knowledge of the time delay is sufficient to dictate 

that the source is located somewhere on that locus of 

points.  In particular, the acoustic source must be 

located on the locus of points that satisfies the constant 

time dela« constraint, namely, the hyperbola in 

Figure 1-2 .  The bearing angle, 6, that the hyperbolic 

asymptote makes with the baseline is a good approximation 
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Figure 1-1 Acoustic Source and Sensors 
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to the true bearing to the source (relative to the 

midpoint of the baseline) especially for distant sources. 

Thus, by making a distant point source (or equivalently 

a plane wave) assumption and solving for the bearing 

angle 0, one is equivalently finding the angle that the 

hyperbolic asymptote (or line of position (LOP)) makes 

with the baseline.  Familiarity with hyperbola suggests 

that the source need not be very distant (relative to 

the sensor separation d) in order for the arrival angle 

to be a good estimator of true source angle.  In the 

estimation problem, the receivers are attempting to 

estimate bearing (or position) of a source that is 

radiating a signal either intentionally or unintentionally 

During intentional radiation (for example, a communica- 

tions system) signal statistics are selectable within 

certain practical and regulatory limitations.  In other 

applications, the signal characteristics are unknown 

and the output of the sensors must be processed without 

this a priori knowledge in order to estimate time delay 

or equivalently source bearing.  In this thesis it is 

assumed that the source characteristics are not under 

the control of the designer and at best the spectral 

characteristics of the signal are known or estimated. 

The time delay estimation research piesented in 

this text is arranged in six chapters and four appendices. 

Because the estimation of time delay and bearing is 

intimately related to the coherence between two received 
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waveforms, an extensive investigation of coherence is 

given (in Chapter 2).  New results on using coherence 

to provide information about linear and nonlinear 

system identification are presented and proved.  Among 

other results, Chapter 2 explicitly shows how the 

signal-to-noise ratio (SNR) is a function of coherence. 

In Chapter 3, the ML estimate of time delay 

between two signals is derived under jointly stationary 

Gaussian assumptions.  The explicit dependence of the 

time delay estimate on coherence is evident in the 

estimator realization in which the two time series are 

prefiltered (to accentuate frequency bands according 

to the strength of the coherence) and subsequently 

crosscorre ated.  The time argument at which the 

generalized crosscorrelation (GCC) function peaks is 

the time delay estimate (Carter and Knapp (1976a)). 

The method of derivation is akin to the ML bearing 

estimate derived by MacDonald and Schultheiss (1969) 

with two exceptions: (1) the technique here requires 

no plane wave assumption but finds the ML estimate of the 

more general time delay parameter, from which one can 

estimate both the hyperbolic LOP and source bearing, 

and, (2) the derivation here does not constrain the 

additive noise waveforms at different sensors to have 

the same spectral characteristics.  These conditions 

allow for widely spaced sensors since the spectral 

characteristics of the noise can be different and the 



signal wavsfront is not constrained to be planar. 

Having derived the ML estimate of time delay, 

we show that it is equivalent to the GCC function with 

prefiltering suggested by Hannan and Thomson (1973). 

Although the ML estimator is the same as the method 

suggested by Hannan and Thomson (1973), this could 

not have been accurately predicted ahead of time. 

The Hannan Thomson (HT) processor was obtained as a 

GCC function with optimally determined weighting. 

In related work, Clay. Hinich, and Shaman (1973) arrived 

at a less general ML estimate for bearing, due to the 

assumption that the signal spectral characteristics 

were flat in the frequency band of interest.  The results 

of this thesis are also more general than those of 

MacDonald and Schultheiss (1969) because there is 

no signal plane wave assumption and the noise spectral 

characteristics can differ from sensor to sensor. 

When the received signal and noise waveforms are 

stationary and Gaussian with known spectral characteristics, 

it is shown that the ML estimate of time delay achieves 

the Cramer-Rao bound.  Thus, the ML estimate, in this 

case, achieves a variance less than or equal to that 

attained by any other means.  Two realizations of the 

time delay estimate are given:  the first, uses the 

GCC function with appropriate prefilters; the second 

appropriately filters, sums, squares, and averages as 
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suggested by Carter and Knapp (1976a).  Further, when 
I 

* the spectral characteristics are known the variance of 

ä the delay estimates is derived for all GCC processors. 

i When the signal and noise spectral characteristics are 
i 

unknown, as is often the case in the passive bearing 
\ 
I estimation problem, it is suggested that an approximate 

I technique be used, whereby estimates of the ML weighting 

are inserted in the place of the correct weighting. 
i 

This heuristic procedure will converge to the ML estimate 
j     | 

provided the weighting is properly estimated.  The 

appendices summarize woik in this area by Carter, Knapp, 

and Nuttall (1973a) to estimate the spectral dens:ties 

including coherence.  (Details of the appendices are 

discussed later in the introduction.) 

In Chapter 4, the variances of six proposed time 

delay estimates, including ones suggested by Roth (1971) 

and Carter, Nuttall, and Cable (1973), are compared for 

an example case where the signal and noise have 

rectangular spectra with different bandwidths.  The 

results confirm the advantages of ML time delay 

estimation. 

The estimation formulation is extended, in Chapter 

5, to three important generalizations: multiple sources, 

moving source, and multiple sensors.  The multiple 

source problem introduces a new term in the award 

function which was maximized in Chapter 3 to obtain a 

single time delay estimate.  This additional term is the 



information between two processes. Nettheim (1966), 

using results of Gelfand and Yaglom (1959), has 

shown the Shannon (1949) definition of information to 

be directly related to the coherence between two 

processes.  Thus, as with the single time delay 

estimation problem, coherence play? an important role. 

Source motion significantly complicates the bearing 

estimation problem as indicated in section B of Chapter 5. 

Indeed, unless some preprocessing is done, the received 

waveforms appear uncorrelated despite the presence of a 

common but time compressed (or less generally, Doppler 

shifted) signal.  A method based on the ideas of Chapter 

3 is suggested for preprocessing the received waveforms 

to remove the effect of source motion.  The last section 

of Chapter 5 extends the filter and sum realization for 

time delay estimation to a multiple sensor environment. 

Finally, Chapter 6 is a brief discussion and summary of 

applications for the methods of time delay estimation 

and suggestions for future work. 

The appendices of this dissertation are provided to 

imDlement and corroborate the theory developed in Chapter 3, 

Appendix A summarizes two methods of spectral estimation 

given in Carter, Knapp, and Nuttall (1973a) and Carter 

and Knapp (1975).  Appendix B gives important results 

of the statistical behavior of the estimates of the 

magnitude-squared coherence (MSC),including the 

probability density function (pdf), the cumulative 
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distribution function (cdf),and the m-th moment of the 

MSC estimate.  A complete discussion of the bias and the 
j 

variance of the MSC estimates is presented, including 
i 

a simulation (done by Nuttall and Carter (1976b)) that 
I 

supports theoretical results of Haubrich (1965) and 

Carter, Knapp, and Nuttall (1973a) and refutes past 

simulation results of Benignus (1969a).  Using a method 

suggested by Benignus (1969a), a reduced bias method 

of MSC estimation is verified; however, it is discovered 
j 

that for many practical estimation situations the reduced 

bias MSC estimator will have increased mean square error 

(MSE) when compared with the MSC estimator given in 

Appendix A. An example is given of erroneous simulation 

results (in particular, unexpectedly large bias) when 

the assumptions of the theory have been violated. 

In the process of detecting a coherent source 

it is desirable to establish a threshold above which a 

source is considered detected. Rules for establishing 

such a threshold are given (Carter (1976)) in order to 

achieve a specified probability of false alarm. Having 

established such a threshold, it is possible to determine 

the probability of detecting a coherent source; the 

probability of detection will depend both on the 

observation time and the underlying strength of the 

coherent source. Example receiver operating character- 

istics are plotted for different observation times and 

coherent source levels. 
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Appendix C gives a complete FORTRAN IV computer 

listing of a program to estimate time delay.  The 

program was successfully compiled and run on both a 

Univac and an IBM computer. Appendix D presents an 

example case to validate both the theory and the computer 

program. 

The text, then, is arranged as follows: Chapter 3 

contains the derivation for the ML time delay estimator; 

because these results depend on the coherence between 

two random processes, we first demonstrate in Chapter 2 

what characteristics the coherence possesses.  Chapter 4 

compares the ML estimator derived in Chapter 3 with 

other proposed methods for estimating time delay. 

Chapter 5 extends the results of Chapter 3 to three 

important generalizations: multiple sources, moving 

source.and multiple sensors.  Applications and a general 

discussion are presented in Chapter 6.  The four 

appendices are all concerned with experimental 

verification of approximate methods for estimating time 

delay presented in Chapter 3. 



CHAPTER 2 

THEORY AND APPLICATIONS OF COHERENCE 

The solution to the physical problem of estimating 

source bearing is intimately tied to the coherence 

between spatially separated passive sensors. 

This chapter presents the definition and properties 

of the coherence and several new results on its use. 

These results bear both directly and indirectly on the 

solution to the optimum delay estimation problem. 

2A. Definition, Relationship to Crosscorrelation, and 

Properties 

2A1. Definition 

The coefficient of coherency (CC) between two 

wide sense stationary random processes is the normalized 

cross power spectral density function defined by Weiner 

(1930) as G   (f) 

————— , (*-l) Yx x (') = xlx2 

xlx2 

{%*[ (f) G   (f) 
x2 2 

where f denotes the frequency (Hz), G   (f) is the cross 
xlx2 

power spectrum between x.(t) and x0(t), and G   (f), 

Gv  (f) denote the auto powe. spectra of x-(t), x0(t), x2 2 
respectively.  Despite some coni sion in the literature, 

Weiner intended for the CC to be complex. This is 

12 
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apparent slnco he discusses (p. 194, Weiner (1930)) 

both the modulus and the argument of the CC.  Moreover, 

in suggesting how one might compute the CC, the modulus 

of the complex numerator is not indicated.  The CC is 

also referred to as the complex coherence (Carter, Knapp, 

and Nuttall (1973a)).  Many of the results which follow 

depend on the magnitude-squared of the CC (MSC).  The 

MSC is also referred to as the squared coherency 

(Jenkins and Watts (1968)). 

In order to simplify the notation throughout 

the thesis, we define 
9 

(2-2) :x x <f> xlx2 
rx x (f) X1X2 

When the two processes under consideration are apparent, 

we further simplify the notation by letting 

C<f> S CXlx^
f> =-  C12<f>' 

1  £ 
The magnitude of the CC (MC) is denoted by 

lv2
(,)l= VVT

7
^ • 

The term "coherence" can imply CC, MC or MSC.  Indeed, 

variables that are a function of the MSC (or MC) alone 

are also functions of the CC alone, but not necessarily 

vice versa.  While it seems most natural mathematically 

to refer to the CC as the coherence, the majority of the 

literature refers to the MSC as coherence. 

Since G   (1) and G   (f) are real, the phase 
xl 1       x2 2 

of the C : denoted by 

v2
(f) = ArgKx2(f)] (2_4a) 
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■ Arg |G„ v (f)| (2-4b) 

= Arg |G„ %. (f)/G„ v (1)|;       (2-4c) 

[°wn} 
[°v2

(,)/V1
,,)]; 

that is, the phase of the CC is the same as the phase of 

the cross spectrum.  Later we will interpret (2-4c) as 

the phase of the optimum linear filter that maps x.(t) 

to x2(t). 

2A2.  Relation to Crosscorrelation 

The CC between x(t) and y(t) can be confused with 

the crosscorrelation coefficient or normalized cross- 

correlation function defined for zero mean processes by 

(2-5) Pxy(t) - 
Rxy^> 

H (0) R ( xxv '     y/v "1 T 

(axx(0) R (0)1*. independent of T.  It 

The normalized crosscorrelation is a function of lag and 

not frequency.  Further note that the normalizing factor 

is the scalar 

is not a lag dependent normalization. The CC has an 

abscissa dependent type of normalization (2-1). 

However, there are two models of filtering that aid in 

interpreting t^e CC as a type of crosscorrelation. 

In the first model, we are given x(t) and y(t) as 

depicted in Figure 2-1, and we want to find the CC 

between x(t) and y(t).  If we prefilter x(t) by the 

linear filter H^f) and y(t) by the linear H2(f), then 

(from p. 399, Davenport (1970)) the cross spectrum 

between the filter outputs is 

G , (f) = G (f) H,(f)H *(f) (2-6) x.y-      xy    1   2 v ' v 
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-^ 
V1 

Figure 2-1 Distinct Linear Filters H^ H2 with Inputs 
x,y and Outputs Xj,y1 
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Thus, if we select 

H1(f)H2*(f) =       1 , (2-7) 

V G (f)G (f) xx   yy  ' 

it follows that 

G   (f) = Y  (f). xlyl       y 

Thus, the CC between x(t) and y(t) can be obtained by 

first prefiltering x(t) by the realizable whitening 

filter 

H,(f) = —~—— ej*(f) (2-8) 
1   "' NT^XT^ 

and prefiltering y(t) with a realizable whitening 

filter with the same phase as (2-8).  Namely, we select 

1 J4>(f) H2(f) = eJKVK±'   . (2-9) 

yy 

Such filtering ensures 

*v v (f)  = *xv(f) ' (2'10) 

That is, the phase between input processes is invariant 

to equiphase filtering.  Then, to compute the CC between 

x(t) and y(t), we compute the cross spectrum between 

x..(t) and y1(t).  This could be accomplished by cross- 

correlating x-(t) and y,(t) and taking the inverse 

Fourier transform (or see Appendix A). 

In the second model used to understand the CC we 

observe that for Xj(t) and y,(t) (in Figure 2-1 ) zero 

mean 
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/ G    (f)H1(f)KJ(r)eJ2,,rT  df 

xlyl 
(T)  % •(2-11) 

/   G     (f) xxv   ' 
—oo 

H1(l) 'df /G    (f) H2(f)     df 

Thus  if 

H1(f)=H2(f)   = J ,    fc-   ^<|fi<fc+   "-I 
o ,   elsewhere 

(2-11)  becomes  (for small  Af) 

¥i 
(T) A vv^vv'-3,,vL 

[' G     (f   )2Af ■ G     (f   )2Af xx   c yy   c' } 

Re [Gxy(f0)eJ2"V 
G     (f   )G     (f   ) xxv   c    yy    c 

(2-12) 

(2-13a) 

(2-13b* 

[w*j2*£<T] (2-13c) 

S    |Yxy(fc)|^s2ufc(T-D)]    • (2-13d) 

The crosscorrelation coefficient at zero argument is 

given by 

(2-14) 
pxiyi(0) = Re[Yxy(fc)] klJl^      i xy- c 

Thus we see from (2-14)and (2-13d)  how the CC is 

related to the crosscorrelation coefficient. 

2A3.  Properties 

The power spectral density matrix is positive 

semidefinite (Jenkins and Watts (1968)).  Therefore, 
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for two random processes, we see that 

lQx(f)l - 

G   ( f) G   ( f) 
xl 1    X1X2 

G   (f) G   (f) 
X2X1    X2X2 

> 0 (2-15a) 

For real processes,G   (f) = G*  (f)  and thus 
Tl      Xl 2 

Gv v <f>G* x (f> -' Gv x (f)'   > ° •     (2-15b) xlxl   x2 2        12 

and 

G   (f)G   (f) > |G   (f)| 
X1X1   X2X2       X1X2 

(2-15c) 

Further, G   (f) and G   (f) are nonnegative, real 
xlxl        x2 2 

functions of 1'.  When G   (f), G   (f) are strictly 
xlxl     x2 2 

positive definite (that is, when G   (f)G   (f)>0), 
11   x2 2 

(2-15c) can be divided through by G   (f)G   (f) 
xlxl   x2 2 

without changing the sense of the inequality thereby 

yielding 

xlx2 
(2-16a) 

Further, the magnitude-squared of any complex number is 

greater than or equal to zero.  Thus, 

0 1  cv x <f> 1 1  • X1Ä2 
(2-16b) 

The MSC always falls betveen zero and one.  Further, 

as will be shown, it is zero if the processes x^t) 

and x„(t) are uncorrelated; and, it is equal to unity 

if there exists a linear relation between x-(t) and 

x2(t). The cross-power spectrum is then defined by 
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Hannan and Thomson  (1973)as 

}x x  (f) = \RTx  (f)Gx x  (f)  Yx x  (f) 
12 '     11 2 2 12 

(2-17) 

This definition is interesting since it points out the 

importance of the coherence.  It should be noted that if 

Y   (f) is undefined, G   (f) cannot be computed from 
xlx2 xlx2 
(2-17) (as, for example, when G   (f) and G   (f) are 

xlx2       xl 1 
zero). Here we note that the statement C   (f) = 0 

xlx2 
provides more information than the statement 

2 
IG   (f)|  =0, since in the former case, both auto- 
xlx2 

spectra must be nonzero.  However, it may be more exact 

2 
to say | G   (f)| ' is undefined when no measurement :s 

xl 2 
made. 

In order to define the MSC, it is necessary that 

the numerator and denominator of that ratio not be 

simultaneously zero. Moreover the MSC will be undefined 

if either autospectra is zevo.  For example, if 

G   (f) = 0 or G   (f) = 0 it must be true from (2-15c) 
xlXl      2   

X2X2 
that |G   |  =0. Hence, it can be concluded that if 

xlx2 
either G   (f) or G   (f)is zero over some frequency 

X1X1       X2X2 
range then the MSC is undefined over that same frequency 

range.  Further, if this is the case, the power spectral 

density matrix is singular.  Another property of the MSC 

is that the MSC is invariant under linear transformations 

If r:(t) is filtered by H^f) and y(t) is filtered by 

H2(f) as depicted in Figure 2-1, t hen 
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xl*l 
(f) 

G     (f) xyv   ' 
G     (f)G     (f) xxv   '  yyv   ' 

(2-18a) 

|G    (f)|2|H  (f)|2jH  (f)|2 

= -!-5Z '        1     » ^ 9= C     (f)(2-18b) 
Gxx(f)|H1(f)|^ Gyy(f)|H2(f)|^       xy      • 

Thus provided   [H^f) | 2 |H2(f) | 2 f  0 

Cxiyi(f)  = Cxy(f)   . (2-19) 

That is, the MSC is the same between x and y as 

between the filtered versions x- and y-. 

2B.  Uses of Coherence Function 

The MSC function for the zero-mean, wide-sense 

stationary processes x(t) and y(t) is useful in several 

ways, which will be proved in the following sections. 

First, for two independent processes, the MSC function 

is zero.  Second, the MSC measures the degree of system 

linearity.  Third, under the assumptions to be 

presented, the MSC function serves as a SNR measure. 

2B1.  Measure of Correlation 

THEOREM 2-1:  If two zero-mean stationary processes 

x(t) and y(t) are independent, they are also uncorrelated 

and orthogonal; 

R  (T) = E[x(t)y(t-T)] = Elx(t)] Ely(t-x)] = 0,(2-20a) 

Gxy(f)  = /  Rxy(x)e-j27TfTdx  = 0   , (2-20b) 

and the MSC 

C    (f)  = 0   , Vf 
xy     ' ' 

provided G    (f)G    (f)   4 0. v xx yy     '     ' 

(2-20c) 

mm 
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Hence, if the two processes are independent (or 

uncorrelated) with zero mean, the MSC between them is 

zero. 

DISCUSSION OF THEOREM 2-1: Note that jointly Gaussian 

random processes that are uncorrelated (incoherent) 

are also independent. However, it is possible for two 

processes to be highly dependent yet uncorrelated 

(incoherent), even if one of the two processes is 

Gaussian.  Although one may be led by physical 

considerations to presume processes are independent and 

hence uncorrelated, in practice, it is easier to show 

processes are uncorrelated than independent. Note that 

if C  (f) = 0, Vf, it follows that Re(Yvv(f)3 = 

Im[y (f)] - 0 - G (f), Vf and thence it follows that xy xy 

R (T) = 0, yT. Hence, we see that if two processes 

are incoherent, then they are also uncorrelated. However, 

as stated earlier, being incoherent does not necessarily 

imply being independent. For example, suppose 

y(t) * n(x) and x(t) is a zero mean stationary random 

2 
Gaussian process with variance o and first order 

probability density  motion (pdf), 

p(x) . _1  e-"2/2'2 ; (2"21> 

>n^2- 2TTO 

then from Nuttall (1958) and Carter and Knapp (1975) 

Rxy(T) = K RXX(T), (2-22) 

where 

''^■—""""gg-*"^-^^ 
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-x /2a  , 
e  '   dx (2-23) 

Therefore, for even nonLinearities, K=0 and R (x)=0. 
xyv ' 

Hence G (f)=0 and C (f)=0.  Thus, it is simple to derive xy xy 

a process y(t) which is completely dependent on x(t) 

but which is uncorrelated with it.  Hence, the converse 

of theorem (2-1) does not hold and coherence does not 

provide information on dependence or independence but 

only on second order measures like correlation. 

2B2.  Measure of System Linearity 

The MSC function can be used to measure system 

linearity.  In Figure 2-2 consider the linear system 

with input x(t), impulse response h(x), and output y(t). 

The output y(t) is expressed by the convolution integral 

y(t) = / h(T)x(t-x) dx , (2-24a) 

or 

y(t) = h(t) • x(t) , (2-24b) 

where © denotes convolution. 

In the Fourier domain the convolution is the multi- 

plication (Oppenheim and Schäfer (1975)) 

Y(f) = H(f)X(f ) , (2-25) 

where X, H, and Y are Fourier transforms of x, h and 

y, respectively. 
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x(t) y (t) 
♦- 

Figure 2-2 Linear System with Impulse Respone h(i) 

■■■■HMÜBW! S*OB ■•*=5m ummmmi 
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1 i 

THEOREM 2-2: 

If a system is linear then 

j<J>  (f)    wf (2-26) 
Y (f) = ejyxyv   , VI 
'xy 

and hence 

C (f) = 1, vf. 
xy 

(2-27) 

(2-28) 

PROOF OF THEOREM 2-2: 

For linear systems, 

o„<«-V')H«<t)0»(t),Vn"nVf>0«<') 

or when G„x<f) t  0 
- ... . 1*/ ' XJ;.,   o (f). (2-29) 
V"   G2 (f) 

XX 

substituting GyyCf) into the basic definition of CC, 

i i<t>    (f) 
Gxv(t) j^i^i- (2-30.) 

V      ( I )   - xy <~^^h^) ^nvf) 

=  ejyxyv 
(2-30b) 

Further, 

Cxy(f)   =-|Yxy(f)|2 = cos2 I Dxy(f)]+sin2[(^xy(f)] =1.(2-31) 

DISCUSSION OF THEOREM 2-2:  This theorem is related to 

work of Koopmans (1964), Jenkins and Watts (1968), 

Otnes and Enochson (1972), Carter, Knapp and Nuttall 

(1973a), Koopmans (1974), Brillinger (1975), and 

Halvorsen and Bendat (1975).  This theorem, experience, 

and certain intuition lead one to believe the converse 

of the theorem should also be true.  To date no proof 

has been presented for the converse. Notably, it is 
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the converse which would play a most important role in 

the applications area.  This is because one is seldom 

given a linear system and asked to measure MSC.  Rather, 

one is given an unidentified system and asked: 

"Is it linear?". In the past, if the MSC was unity, one 

had a "hunch" that this was true but no rigorous proof 

existed to assert this truth.  The following theorem 

acts to clarify this dilemma and indeed show what can 

and what cannot be said about linearity when the MSC 

is unity. 

The strongest theoren; which can be proved in 

this regard is as follows: 

THEOREM 2-3:  If C  (f)=l,Vf, then with probability one 

there exists an optimum filter with unique transfer 

function H (f) that can act on the input, x(t), to an 

unidentified system to achieve output yQ(0 exactly 

equal in every detail to the output y(t) of the 

unidentified system, (that is, y (t)-y(t), with 

probability one). Moreover, the phase of the filter 

Arg  Ho(f)  = *yjt(f) 
= Are Vx(f) ' 

In order to prove theorem 2-3, it is necessary to introduce 

and prove a lemma. 

LEMMA 2-1:  If G (f) is the power spectrum of an ergodic 

random process with member function e(t) and if G (f)~0, 

t 

• ee 

Vf, then e(t) equals zero with probability one for all t 

PROOF OF LEMMA 2-1:  From p. 150, Papoulis (1965), the 

Chebycheff (or Tchebycheff) inequality is 

- 
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2 
Prob {|e(t)-E[e(t)] |<e} > 1 - -2^ , (2-32) 

e 

where e>0 can be made arbitrarily small and a" is the 

variance or power of e(t).  The autocorrelation function 

of e(t) is 

R
ee

(T)  =  '°°Gee(f)eJ2lTfT  df' (2_33) 
— oo 

but Gee(f)=0, Vf so that Ree(i)=0, VT.  In particular 

R
ee

(0) = f[e2(t)]=0 = a2 + E2[e(t)] .        (2-34) 

Hence a =0 and E[e(t)]=0.  Alternatively note that the 

value of the tails of the autocorrelation is related to 

the mean value of the function.  Specifically, (p. 333, 

Papoulis (1965)) 

lim R (T) = E2[e(t)l . (2-35) -£-►<» ee 

So since R (T)=0, VT ee 

lira Ree(T) = 0 , (2-36) 

it follows that 

E2[e(t)] = 0, (2-37) 

and thus that 

E[e(t)] - 0  . (2-38) 

2 
Therefore, the Chebycheff inequality with a -0 and 

E[e(t)]= 0 is 

Prob [|e(t)|<e]>  1   , (2-39a) 
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but 0 < Prob[ ] <_ 1 so that 

Prob [|e(t)|<e]= 1 ; (2-39b) 

that is, the probability that je(t)| is less than some 

arbitrarily small value is one.  Statistically, we say 

that this event happens "with probability one" or we 

say that it happens "almost surely." So when the power 

spectrum G 0(f) of this random process is zero for all 

frequencies, then e(t)=0 with probability one. 

DISCUSSION OF LEMMA 2-1: 

The interpretation of the results can be 

misleading for transients (nonstationary processes). 

For example, consider (see, for example, p. 93 of Lee 

(I960)), 

1 i m 1  yT 2 
-T T+°° 2T 'm  e (t)dt = R (0) = / G (f) df. ee" '  -°° ee 

Now clearly there exists etO-jt 0 such that 

(2-40) 

T im ± f  T e2(t)dt - 0 (2-41) 

For example, if a finite energy pulse lasts only a few 

seconds, then the power (or "average" energy) in such 

a nonrepetitive pulse is zero.  This is because 

lim ; T e
2(t) dt 

equals some nonzero constant energy but 

lim _! fT  e
2(t)dt 

T-» 2T _T 
e Kl} 

—■ 
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equals zero; hence, the power is zero. Transient 

situations of this type are disallowed by the erpjodicity 

constraint which requires stationarity.  (Ergodic 

processes are stationary but not necessarily vice versa.) 

The essence of the proof then is that for ergodic random 

processes almost surely e(t)=0 in that frequency band 

where G (f)=0.  This is a reasonable practical assumption; 

however, it should not be overlooked that there exists a 

nonstationary class of processes for which the proof of 

LEMMA 2-1 does not apply. We now proceed with the proof 

of theorem 2-3. 

PROOF OF THEOREM 2-3:  It is instructive to visualize 

the proof as attempting to select an optimum filter such 

that the minimum mean squared error (MMSE) is achieved, 

where the error e(t) is defined as e(t)=y(t)-y ;t), 

as shown in Figur«* :!-3. 

The solution will make no presumptions on the 

origin (source) of y(t).  It is useful, however, to 

envision y(t) as the stationary output of an unidentified 

| system as depicted in Figure 2-4; such a model is a 

special case of Figure 2-3, but is perhaps a more common 

system identification problem.  Whether the error signal 
i 

e(t) is generated from Figure 2-3 or Figure 2-4, it 

follows that the total power is given by 

j 
1    _L  T/9   9 lim T ; i*  e*(t)dt = / G (f) df  .       (2-42) 

-T/2 

.r~~ _ :   ^.'..^s^j^jilmiumaiiijmmL 
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e(t) 

Figure 2-3 Model of Error Resulting from Linearly 
Filtering x(t) to Match Any Desired 
Signal y(t) 

üHn •««i^tftiM*«. 
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X fr) UNIDENTIFIED 
SYSTEM 

*fr>   /iv/W   ä 

LINEAR 
FILTER: H 

yofr) 

»fr) 

Figure 2-4  Model of Error Resulting from Linear 
Approximation of Nonlinearity 

PB-— 
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All power spectra have the property that they are non- 

negative.  The implication is that in integrating over 

the interval (~a0,a>),   there will be no portions of 

G (f) that will "cancel" other portions. Solving for 

G (f), it can be shown that 

G (f)=G (f) + G (f)|H(f)|2-H(f)Gxv(f) ee    yy      xx xy (2-43) 

-H*(f)G* (f), 

which can be written,   as done by Carter and Knapp  (1975), 

as 
G„(f)   o r -, 

G     (f)=G     (f)|H(f)- T^TTJ   +G     (f)   1-C     (f)   • (2-44) ee xx     ''   v   '    G    (f)1       yy     'L      xy     'J ' 
AA 

Since 

G    (f)  > 0,   G „(f)  >  0,   and 0 < C    (f)   <  1   , xxv   ' —    '     yyv   ' —    ' —    xy        -       ' 

it is necessary to minimize 

|H(f) --G^)! 
xx 

which is done by selecting the optimum linear filter 

G (f)    IG (f)  4A ,*, 
H (f)  =  yx    =  y*   eJ»vx(f) (2-45) H (I)   G (f)    G (f) e yx U ID; 

XXV '       XX 

The optimum filter is a Wiener filter and is discussed 

in texts by Lee (1960) and Van Trees (1968). The Fourier 
i 
t 

transform of (2-45) is the impulse response 

ho(T) = £  Ho(f)e
j2lTfTdf  . (2-46) 

In general, h (T) will be a nonzero for x<0; hence, 

the system will be nonrealizable.  Various methods can 

be applied to obtain the optimum realizable linear filter; 

although they are beyond the scope of this thesis, they 

_» it 
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are discussed in standard texts such as Lee (1960) or 

Van Trees (1968). 

From (2-45) the cross spectrum between x(t) and 

y(t), 

Gyx(f) =Ho(f)Gxx(i„ (2-47) 

but since x(t) excites a linear filter H (f) to produce 

output y (t), it also follows that 

G  (f) = H (f)G  (f)  . y xv '   o   xxv ' 3 o 

Substituting (2-48) into (2-47) yields 

G  (f) = G  (f) yxv '        y x ' 

Since y(t)=e(t) + yQ(t) , 

(2-48) 

(2-49) 

R (T) = E{ [e(t)+yo(t)]x(t-T)} 

= R (T) + R  (T)  . exv ' y xv ' o 

(2-50a) 

(2-50b) 

But by taking the Fourier transform of both sides of 

(2-49) 

R „(T) = R V(T)  . (2-51) yx      y x ' 

Hence, from (2-51) and (2-50) 

Rex(T) = °'0ex(f)-0; (2-52) 

that is, the error is uncorrelated with the input x(t) 

This is an interesting property of the error signal 

in it's own right.  When x.(t) is linearly filtered 

by H.(f) to yield y.(t) for i=l,2, the cross-power 

spectrum of the filter outputs is given by Davenport 

(1970) as 

——. PNR-Mn 9TW ■■ ' WMF*-~*P—m 
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G   (f) - H1(f)H*(f)G   (D  . (2-53) 
yly2 xl 2 

| 

Hence in the special case where x1(t)=x(t), x2(t)=e(t), 

H1(f)=HQ(f) and H2(f)»l, it follows that 

G  (f) = H (f)G  (f)  . (2-54) yev/   o   xe v   ' o 

So if the error is uncorrelated with x(t) (that is, if 

G (f)=0), then it must be true that G  (f)=0 (that is, xe yQe 

the error is uncorrelated with the output of the optimum 

filter).  The waveform x(t) being uncorrelated with e(t) 

implies that e(t) is also uncorrelated with y (t). 

Further, 

Rey(i) = E[e(t)y(t-T)]) (2-55a) 

but y(t)=e(t)+yQ(t) so that 

Rey(x) = E{e(t)[e(t-T) + yQ(t-T)]} (2-55b) 

= Ree(
T) + Rey <T>  • (2-55c) 

Recognizing that R  (T)=0 and taking the Fourier 
eyo 

transform of both sides of (2-55) yields 

Gey(f) = Gee(f)  ■ <2"56> 

The selection of the optimum H(f) forces (2-44) to 

become 

Gee(f) -G/)[l -
Cxy(f)]  • (2"57> 

When C (f)=l, clearly (from 2-57) G (f)=0, and thus 

(from LEMMA 2-1) e(t)=0 with probability one, but 

y(t) = yQ(t) + e(t), (2-58) 

so that almost surely, 

y(t) = yQ(t)  . (2-59) 

^—^—————**—————^—■— 
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Thus, with probability one, the linear filter 

I Ho(f) = Hy x<f> = GyX(f)  eJ*yx(f)       (2~6°) 

will operate on x(t) to achieve y (t)=y(t).  If the 

optimum output y (t)=x(t) © h (t) then by the Fourier 

transform relation 

YQ(f) = X(f)HQ(f)  . (2-61) 

The Fourier transform is a one for one reversible 

transformation so that a unique x(t), y(t) implies a 

unique X(f), Y(f), but then 
Y„(f) 

H„(f) = 'oVi/    X(f) (2-62) 

must be unique. This completes the proof of theorem 2-3. 

DISCUSSION OF THEOREM 2-3: 

Unique transfer functions do not identify 

unique systems,  Indeed, nothing is known about the 

internal structure of the unidentified system.  Further, 

the fact that the system can be modeled by a linear 

system H (f) such that when both (system and model) are 

stimulated by an excitation x(t) they yield identical 

output y(t) does not prove that the system is linear 

over all inputs. There may indeed be unobservable 

nonlinearities in the unidentified system.  For example, 

suppose the excitation x(t) is stationary but with first 

order pdf such that -A <|x(t)|<A. This implies that 

x(t) never excites the unidentified system for amplitudes 

greater than A; hence, no conclusions can be drawn 

about the linearity of the system over all inputs. 

  —    
■ ■ " 
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Many "real world" systems are linear over a certain 

range of amplitudes and then saturate above that 

amplitude as in the case of analog computers 

(Koehenburger (1972)).  As another example, consider 

any stationary x(t).  The stationary excitation has 

only one invarianc power spectrum G (f).  Systems 

which appear linear for some G (f) but which are 

clearly nonlinear for different input statistics are 

simple to envision.  If a system is nonlinear but the 

nonlinearity is not excited (or more generally, not 

observed), then the system will appear linear and the 

measurement of the MSC will equal unity.  In essence 

then, the class of nonlinear functions is so largo that 

based on a single excitation (even white Gaussian noise) 

it is impossible to claim, without qualification, that 

a system is "linear" simply because the MSC is unity, for 

ali probed frequencies.  Another type of nonlinear system 

is one in which the MSC is observed to be unity in some 

frequency bands and not unity in other bands.  Thus 

y (t) f  y(t), unless those frequency bands which cannot 

be accounted for by linear processing are removed.  More 

precisely, if C  (f) = 1 in the frequency band (i'f9) xy i-     £ 

then with probability one there exists an optimum linear 

filter with unique transfer function H (f)  that can 

] act on x(t) to achieve optimum output y (t) where o 

y (t)=y(t) • h.(t) and hy(t) is the impulse response of 

an ideal zero phase, unity gain "box car" filter that 

"*-v~*" 
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passes only those frequencies in the (f1,f0) band. 

\ The whole problem of nonlinear systems can be treated 
\ 
] by considering what proportion of a system output c.iin 

bo attributed to a linear operation and what proportion 

is due to a residual or nonlinear operation.  In 

general, the power spectrum of the optimum output 

Gv v (f> = lHn(f>i2G*x<f> (2"63> yoyo 

or substituting (2-1), (2-2) and (2-45) into (2-63) yields 

G   (f) = G (f)C  (f)  . (2-64) 
yoyo      yy   xy 

This important result (Carter and Knapp (1975)) can be 

rewritten as    r ,~s 
Gy y (f) 

Vf) = Gy°/t)     ~     • <2-65> 

The implication is that the MSC measures the portion 

or amount of power (G v(f)) which can be obtained through 

optimal linear filtering (in the MMSE sense) of x(t). 

Moreover, it is always true (provided C (f) is defined) xy 

that 

G  (f) = C  (f)G  (f) + Tl-C  (f)]G  (f)  .    (2-66) yy     xyv  yyv    |_  xyv 'J yy 

Substituting from (2-64) and (2-57) into (2-66) 

yields 

G  (f)=G   (f)+G  (f)  , (2-67) 
yy     v y      ee 

which implies the power spectrum of the output of a 

system is comprised only of the sum of an error spectrum 

and an optimum spectrum.  This same result can be 

noticed from 
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Vl) = Ree(T> + Hy e(r) + R  (T) + R   , . 

but Ryoe
(T)=Rey ("T)=0^ -o that 

\ I "        "O^O 

R
yy

(T) = Ree(T) + Ry y (T)  ■ (2"69) 

Computing the Fourier transform of (2-69) verifies 
(2-67). 

Just as the MSC measured what portion of G (f) 
yy 

could be obtained by (optimal) linear filtering, one 

minus MSC is a measure of the portion of output power 

due to an uncorrelated error component; that is, 

Gee(f) 

cTTf7 ' X " Vf) • <2-70> yy '      ' 

Thus, it follows that the ratio of the optimum linear 

power to the nonlinear or error power is 

1 - C  (f)'  ' (2-71) xyv ' 

(This ratio will be important in the estimation of time 
delay. ) 

For practical nonlinear systems, the identification of 

the optimum linear component is not always obvious. 

For example, in the system without noise described by 

y(t)=x (t)+b x(t), the optimal linear part is not bx(t). 

To clarify this point, it will be demonstrated that for 

a limited class of inputs and a limited class of non- 

linearities, analytic expressions for the optima] linear 

part can be obtained. This offers interesting insight 
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into both the general sys/rm identification problem and 
I 

the coherence interpretation problem.  First, the 
1 
I 

nonlinearity is constrained to have no memory and no 
I 

noise, that isJy=n(x).  Second, the input processes are 
I 

constrained to be separable in the sense defined by 

Nuttall (1958).  A separable process with second-order 

pdf p(x1,x2;i) and mean u is defined as one for which 

the integral /"(xr^Opfx^.x -x)dx^ separates into the 

product of a function of x„ alone and a function of 

T alone.  For example, it can be shown that a Gaussian 

process possesses these properties and, hence, is a 

separable process. 

Under the no-memory nonlinearity and separable 

process constraints, it has been proved by Nuttall (1958) 

the crosscorrelation between x(t) and y(t) at delay x is 

given by 

R  (x) = K • R (x) , (2-72a) yx  y      xx '   ' 

where 

1 K * ~ / n(x)(x-y)p(x)dx , (2-72b) 
o  -°° 

p(x) is the first-order pdf of x(t), n(x) is a complete 

description of the no-memory nonlinear function, and 
o 

o ' is the variance of x(t). Notice that the constant K 

does not depend on frequency or delay but only on the 

first-order pdf and the nonlinearity.  It follows directly 

from (2-72a) that, for no-memory nonlinearities excited 

by separable processes, 

^Mrajjui[Liin:j:: ..    . . m 
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V(f) = Yv»(f) = K / G^(,)   • (2-73> (f) = Y  (f) = K /~G(7) rx. 'xyv       / xx 
V G cn » yy yy 

Comparison of (2-73) with (2-45) and (2-1) shows that 

the constant K is the optimum linear filter in the 

MMSE sense. 

As an example, suppose x(t) has a Gaussian 
2 

zero-mean,   a— variance pdf;   then 
00 2       2 

K =   ~ f    n(x)x ——e "x  l2a dx. (2-74) 
a
z    _» r~    2 

V 2iro 

Whenever the pdf is even and n(x) is an even function, 

K^O so that the coherence is zero. However, when n(x) 

is an od'i function, K does not necessarily equal zero 

even though the unidentified system is nonlinear.  For 
3 

example, when n(x)=x (t)+bx(t), application of (2-74) 
2 

yields K=3o +b.  Therefore, the optimal linear part of 

x3(t)+bx(t) is not bx(t) but rather y (t) = (b+3a2)x(t) 
2 

for a zero mean Gaussian process with variance of a   . 

For b=0, it follows that K f  0 and C (f) f  0 provided xy 

G (f) f  0.  However, if b=-3o , then K=0 and C (f)=0. xx xy 

Thus, the MSC may still be zero even though the non- 

linearity is not even.  A computer simulation of the 

exampJe with o = V2 an<* b~" 3/o was conducted, and the 

results verified the theory (Carter and Knapp (1975)). 

This result can be independently verified by calculating 

R (T) = E{x(t)[x (t-T)+bx(t-T)]}, which for Gaussian 
2 processes is 3o R (i)+bR (T). Therefore, C  (f)-0 if xx     xx xy 

2 
b--3o , and there is no power in the optimum linear part 

"TlTJl ~~---LJ i    .' '. " 
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3       2 of the nonlinearity n(x) = x (t) - 3a x(t). 

Parenthetically, we note that another approach 

to this problem is to expand the no-memory nonlinearity 

TI as an infinite series of orthogonal polynomials, 

specitj catly, 
on 

y(t) = n[x(t)] = X a H [x(t)] , (2-75a) 
n=0   n 

whore the H  (x) are e Hermite polynomials (see, for 
n 

example, p. xxxv, Gradshteyn and Ryzhik (1965)) 

II  (x) = l, H  (x)=x, H  (x)=x2-l, H  (x)=x3-3x e v '     '     e-  '    e„       '  e„v 
o        l        2. 5 

and in general 

H   (x)=xH  (x)-nH   (x)  . (2-75b) 
n+1      n      n-1 

Then, the crosscorrelation between x and y is given by 
on 

R  (i) = Y.  a E{x(t)H  [x(t-r)]}  . (2-70) 
y    n-0 n 

The advantage to this method is that, if the family of 

correlations 

R xH  (x)(t) = E^(t)rie [x(t-T)]},  n=l,2,...    (2-77) 
e n n 

had been computed once, orthogonal expansion of n(x) 

makes R  (T) immediately apparent by a simple weighted 

summation. 

It is perhaps germane to clarify the significance 

of knowing that the MSC is unity.  Just as C  (f)»l for xy 

all f ensured that there was some linear filter that 

mapped x(t) into y (t)=y(t) exactly, there also exists 

a linear filter which maps y(t) into x(t) exactly.  That 

■^mmmmmmama»» 
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is, since |G „(f)|2 ■ |G (f)j2, C  (f) = C  (f) and i Xyv  i    i yX\ /i .  xy      yx ' 

conclusions drawn with regard to x(t) and y(t) have 

an analogous relation between y(t) and x(t).  Thus, 

even though one cannot make unqualified statements 

about the unidentified system, there certainly exists 

a total detailed knowledge of its output for a given 

input and therefore, all of its output statistics when 

the MSC is unity and the input remains unchanged.  All 

this is accomplished through the utilization of a 

linear (though not necessarily realizable) model. 

2B3.  Measure of Signal-to-Noise Ratio 

The coherence can be used for determining SNR 

as will be discussed in this section.  The results of 

this section are of interest from two points of view. 

First, the SNR is a fundamental concern in the basic- 

passive detection problem and parameter estimation problem, 

and second the results of this section will aid in the 

interpretation of optimum delay estimation and variance 

of the estimate of coherence phase.  Hence, while these 

results can be derived independent of the time delay 

estimation problem, they will form an important role in 

the understanding of how to estimate time delay or 

source bearing. 

When x(t) is linearly filtered to yield output 

y(t) and the output is corrupted by uncorrelated additive 

noise, as depicted in Figure 2-5, then the noise power 

spectrum is 

T~    :.Ti'^]jLii!ijjE:.L-i]i^i^,.Lii.i  . .-in——    —     " "TiiiTTnii 
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G  (f) = G  (f) [~1 - c  (f)l nnv     yyv '   |_    *y  J (2-78) 

This is an intuitively satisfying result since the MSC 

is unity if there is no noise, whereas the> Msc is zero 

when the output is all noise.  For linear systems, 

additive noise uncorrelated with the input reduces the 

MSC according to the ratio of G (f) to G (f). 6 nnv      yy 

Measurement of G _(f) is useful not only in the image 

processing problem discussed by Cannon (1974) but also 

in studying the gross effects of digital filtering when 

viewed £.s a perfect filter plus additive noise (James 

(1975) and Weinstein and Oppenheim (1969)).  These 

methods can also be applied to studying special problems 

such as fast Fourier transform (FFT) noise (Ferrie and 

Nut tall (1971) and Rabiner and Rader (1972)). 

The power spectrum from the output of an arbitrary 

system can always be viewed in terms of its two components 

)[l-C  (f) 
j_  *yv ' 

Gyy(f)Cxy(f) and Gyy(f)| 1-Cxy(f)| regardless of how 

G (f) is produced (as long as C (f) is defined). It is 
yy xy 

interesting to note that the ratio of these components 

(2-79) 
Gy y (f)   G  (f) 'o'o   ..  zzv ; 

G (f) ee  ' GBB(f) nn 

C (f) xyv 

1 - C  (f) xyv 

can be considered as either the SNR or the linear to- 

nonlinear ratio, depending on the application. 

For situations like those shown in Figure 2-5, 

the coherence measures what proportion of an unidentified 

system output is "linear." Through the use of (2-7!)), 

the M3C provides a comparison of the proportion of system 
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power that is linear with the proportion that is 

nonlinear in exactly the same way in which the SNR 

was measured for the output of n linear system corrupted 

by additive noise.  However, in other system 

configurations, such as that shown in Figure 2-6, where 

noise and signal have a different interpretation, 

relation (2-79) will not be useful.  Figure 2-6 is of 

interest to the sonar community since it is analogous 

to the physical situation in which signal s(t) from an 

acoustic source is received at two geographically 

separated sensors. Each observed signal is corrupted 

by additive stationary noise and is linearly filtered. 

When n..(t) and n„(t) are uncorrelated but have the same 

power spectra G (f), the SNR, G (f)/G (f) is readily nn ss    nn 

shown to be 

G (f)   *  C(f) ssv '     _ \  xyv ' 
Gnn(f)    l-J C „(f) V xyv 

(2-80) 

which differs from (2-79).  (Note from (2-19) that 

C „ (f)=C (f).)  Ironically it will turn out to be r1r2
v   xyv \ ' 

(2-79) and not (2-80) which is critical to our problem. 

In cases where each transmission path attenuates the 

source signal differently, the model must be changed 

to reflect an attenuation in one channel.  Unless 

simplifying assumptions are employed, the net result 

is that G (f)/G (f) cannot be determined from C  (f) ss    nn x y 

unless attenuation in each path is known.  (See 

section 4 of appendix B.) 
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More generally, the source is transmitted 

through two ocean medium operators H-(f) and H„(f) 

as shown in Figure 2-7, which can attenuate the signal 

differently at different frequencies.  For illustrative 

purposes, we assume that the ocean medium operators are 

linear time invariant filters.  Thus s..(t) and s2(t) 

are the outputs of filters H.,(f) and H2(f), respectively, 

which have been excited by source s(t).  This model of 

linear filters and noise is mathematically tractable 

and has been proposed before, as for example, on 

p. 389 of Whalen (1971). (More sophisticated models are 

given by Kennedy (1969).) When the noise n.(t) is 

uncorrelated with the signal s.(t), the power spectral 

density at the output of the i-th sensor is given by 

Gx.x.(f) = Gss(f)|H.(f)r + Gnn (f), i=l,2      (2-81a) 

(2-81b) 

l l l l 

= Gs s (f) + Gn n (f)' i=1'2  • sisi     nini 

Further, the ratio of the power at the output of the 

filter to the corruptive noise power depends on the MSC 

between the source and the sensor.  Specifically, from 

equation (8) of Carter, Knapp and Nuttall (1973a) or 

(2-79), 

Vi(t) 

V,(" 
c  (f) sx.  ' 

1 - C  (f) ' sx.  ' 
1 

i-1,2 . (2-82) 

(Note that when jH. (f) | =jtl, (2-82) does not measure the 

ratio of source to noise power.) The coherence between 

w- 
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x..(t) and x2(t) in Figure 2-7 when and n..(t) and 

n„(t) are uncorrelated is given by 

Y    (f) =   ss   x   f—  . (2-83) 
1X2     J G„ ; (f)G   (f) VW l22 

In order to relate this result to the coherence 

between the source and each sensor, note that. 

G (f)H.(f) ss   1 

W> - f-G (f)G (7) • i=1'2, <2"84' V i     \     ss   x. x. 

so that 

Yx x (f) = Y_x (*)Y * (f)  • (2-85) 

Taking the magnitude-squared yields 

Cv v (f) = CRX (f)c« <f)  • (2~86) xl*2        1     2 

Thus, when a source drives two linear time invariant 

filters whose output is observed in the presence of 

uncorrelated noise, the MSC between the outputs can 

be no larger than the MSC between the source and any 

sensor.  In particular, for two sensors the MSC is 

th' product of the two source MSCs, as given in (2-86). 

However, it is possible to have a source transmitted 

tnrough some nonlinearity such that the MSC between 

s(t) and x..(t) is low and the MSC between s(t) and 

Xr>(t) is low and the MSC between x-(t) and x„(t) is high. 

For examp]e,suppose s(t) is a member function of a 

stationary random process which is separable in the 

2 
Nuttall sense.  Then the MSC between x1(t) = s (t) and 

*.'^WJw?lJ 
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s(t) is zero; similarly^the MSC between x2(t) = s (t) 

and s(t) is zero; however, for this example, the MSC 

between x.,(t) and x2(t) is unity.  Thus,care should 

be used in interpreting these results since they apply 

only to the case where the medium can be accurately 

modeled by linear time invariant filters corrupted by 

uncorrelated additive noise. 

Using (2-86) we can compute a SNR squared quantity, 

namely, 

Gs  (f)   G   (f)        Cxix2(f) slsl       s2 2 (2-87) 

nlnl 
(f) n2n2 

(f) 
L   sxi 

(f)1 1-C  (f) sx„ 

To be useful (2-87) requires knowledge of the source to 

1      a"2 L A1Ä2  -1 
sensor MSCs.  However.if C  (f) = C  (f) = [~C   (f) 

üA^ O S\ fy A 1 A. 

then it follows that 

G _ (f)G _ (f) 
S1S1   S2S2 

G  (TTG Try 
nlnl   n2n2 

f) 
(2-88) 

The results on coherence from this chapter will 

add to the understanding of the role of coherence in 

ML estimation of time delay as will be seen in the next 

chapter. 



CHAPTER 3 

MAXIMUM LIKELIHOOD ESTIMATE OF TIME DELAY 

In the first section of this chapter an ML 

estimator is derived for determining time delay between 

signals received at two spatially separated sensors in 

the presence of uncorrelated noise.  This ML estimator 

can be realized as a pair of receiver prefilters followed 

by a crosscorrelator.  The time argument at which the 

correlator achieves a maximum is the delay estimate. 

In the second section of this chapter, the variance of 

the time delay estimate is derived and compared with 

the Cramer-Rao lower bound, and in the final section, 

various realizations of the processor are considered. 

3A.  Derivation 

For the purposes of the derivation, a signal 

emanating from an acoustic source and monitored in the 

presence of noise at two spatially separated sensors 

can be mathematically modeled as depicted in Figure 3-1. 

Mathematically, 

(3-la) x1(t)=s1(t)+n1(t) 

(3-11.) x2(t)=us1(t+D)+n2(t) , 

where s^(t), n-(t), and n2(t) are real, jointly stationary 

50 
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random processes.  The delay, I), is the unknown parameter 

to be estimated.  Signal s..(t) is assumed to be 

uncorrelated with noise n.,(t) and n2(t).  Later we also 

assume n-(t) and n2(t) are uncorrelated with each other. 

More generally, it may be assumed that s2(t) 

is liiicarly related to s-Ct) by the transfer function 

H(f)=|a(f)|e"J2,TfD .  Thus, unlike (3-1) where the 

Fourier transform of the system output is as.j(f)e~J 

the output transform in this case is |a(f)|s (f)e~J 

The linear phase characteristic of such a system is 

assured when the impulse response is symmetric about 

x=D.  For realizable systems, this implies that the 

duration of the impulse response must be finite.  Thus, 

in a sense, we are estimating the midpoint of a symmetric 

finite impulse response (FIR) filter depicted in 

Figure 3-2a.  Such an impulse response is not necessarily 

peaked at D (as for example in Figure 3-2b).  In the 

derivation which follows, then, a can (more generally) be 

interpreted as a frequency dependent attenuation |o(f)|. 

There are many applications in which it is of 

interest to estimate the delay D.  This chapter derives 

an ML estimator and evaluates its variance.  Chapter 4 

compares the estimator with other similar techniques. 

While the model of the physical phenomena presurr.Co 

stationarity, the techniques to be developed herein may 

be employed in slowly varying environments where the 

characteristics of the signal and noise remain 

HH ***^-^*--~ 
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Figure 3-2  Sy&toetric Impulse Response for Two FIR 
Linear Phase Filters 
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stationary only for finite observation time T.  Further, 

the delay D and attenuation a may also change slowly. 

The estimator is therefore constrained to operate on 

observations of a finite duration.  Having estimated the 

delay, an estimate of the bearing may be obtained by 

mapping the delay estimate according to (mit lall, Carter 

and Montavon (1974)) 

0 = arc cos JLA (3-2) 

where £ is the nominal speed of sound in the non- 

dispersive medium and d is the sensor separation. 

(See pp. 93-103 of Urick (1987).) A rigorous derivation 

for the ML estimator of D using the mathematical model 

(3-la) and (3-lb) requires that signal and noise spectra 

be given (that is, known).  (See Hannan and Thomson 

(1971).)  When they are unknown, a heuristic procedure 

of estimating these spectral characteristics is suggested. 

The ML estimator of delay can be realized as a pair of 

receiver prefilters followed by a crosscorrelator.  The 

time argument at which the correlator achieves a maximum 

is the delay estimate.  Qualitatively, the role of the 

prefilters is to weight the signal passed to the 

correlator according to the strength of the coherence 

function.  This weighting turns out to be equivalent to 

that proposed by Hannan and Thomson (1973) and under 

simplifying assumptions to that proposed by MacDonald 

and Schultheiss (1969).but apparently differs from the 

results of Clay, Hinich and Shaman (1973).  However, the 
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development presented here does not presume initially 

that the estimator is a GCC function.  Rather, it is 

shown that the ML estimate may be realized by prefiltering 

and crosscorrelating the data x.(t) and x„(t).  Indeed, 

other realizations of the ML processor are also possible. 

(See section 3C of this chapter.) For example, the data 

can be appropriately filtered, sumr.ed, squared and 

averaged in order to estimate the delay.  This latter 

processor follows directly from the derivation presented 

here and is discussed fully in 3C. 

To make the model (3-1) mathematically tractable, 

it is necessary to assume that s-(t), n<(t) and n„(t) 

are Gaussian. Denote the Fourier coefficients of x.(t) 

as 

where 

X,(k) = i / T x.(t)e"JktuAdt, (3-3a) 
l     i 0  x 

u»A - Y     . (3-3b) 

Note that the linear transformation X.. (k) is Gaussian 
J. 

since x.(t) is Gaussian.  In practice, the integral will 

be replaced by a discrete Fourier transform (DFT) or 

FFT.  When the number of data points in each FFT is large 

(as will usually be the case) then, by a central limit 

theorem argument, X.(k) will tend toward being Gaussian 

even if the x.(t) are not Gaussian.  This presumption 

1These observations were brought to the authors 
attention by Dr. G. Mohnkern of the Naval Undersea Center, 
San Diego, California . 

~* nafeBRMB^wp*" 
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is borne out by Benignus (1969b).  Hence, the 

requirement that s.,(t), n..(t) and n„(t) be Gaussian 

is not a strong requirement. 

As the observation time T>°°, 

T x± (k) - Xi(ko)A) , 

where X. is the Fourier transform of x.(t).  A more 
l l 

complete discussion on Fourier transforms and their 

convergence is given in Davenport (1970), Jenkins and 

Watts (1968), Koopmans (1974), Otnes and Enochson (1972), 

Bendat and Piersol (1971) and Brillinger (1975).  From 

MacDonald and Schultheiss (1969), it follows for T large 

compared with |D| plus the correlation time of R   (T), 
sl'sl 

that 

E [X1<k)Xj(£)] 

1 G 
T x1x2(ko)A), k=i 

0 , kfl 

(3-4) 

Note that EfXi(k^]= E[x1(t)] =0, i=l,2. 

Now let the vector 

X(k) = [x1(k),X2(k)l '  , 

where ' denotes transpose.  Then the covariance or X(k) 

is 

X1(k)XJ(k) X1(k)Xg(k) 

(3-5) 

E rx(k)X*'(k)J =E 
X2(k)XJ(k) X2(k)X^(k) 

(3-6) 

min  
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JL 
T 

Gx1x1
(kwA)     G

Xlx2(^A> 

°x1x2
(kü>A)     °x2x2

(kWA>. 

(3-7) 

4 -1 Q (kw.)  , T   x   A 
(3-8) 

where Q (w) is the spectral matrix of  x,(t),x9(t)| . 

The vectors X(k), k=-N,-N+l N are, as a 

consequence of (3-4), uncorrol ati-d Gaussian (hence, 

independent) random variables.  More explicitly, the 

pdf for X 5 X(-N),X(-N+1),...,X(N), given attenuation 

a and delay D is1 

where 

p(X|ct,D) = h-exp - 2 Jl 

J = I  X*'(k)Q-1(k(.A)X(k)T 

k=-N 

(3-9) 

(3-10) 

and h is a function of |Qx(ka,A)| (Van Trees (1968)). 

Replacing TX^k) by ^(k^). the Fourier transform of 

x (t), it follows from (3-10) that 

J  . Z     X*'(ku)A)Q;
1(ko)A)X(ko3A)f 

k=-N 

(3-11) 

The ML estimate of D (see, for example, Jenkins and Watts 

(1968) or Van Trees (1968)) is the value of D which 

maximizes p(X|ct,D). 

the density function depends 

-N+l, . . • ,N. 
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In general, the parameter D affects both h and 

J1 in (3-9).  However, for uncorrelated noise in (3-1), 

h is independent of the delay. 

For large T, (3-11) becomes 

~* -1, Jx = / X (f)Qx-
x(f)X(f)df (3-12) 

From (3-6)-(3-8), 

%(f) - 

G   (f)   -G   (f) 
x2 2       X1X2 

-G*   (f)  G   (f) 
xlx2     xlxl 

iYi(,)V2
("-|V2

("1 

■^"^("V,(',I'1'VS"
) 

(3-13a) 

[l-C12<f>]' 
(3-13b) 

where C19(f)=C   (f), which will exist provided 

C12(f) +\\   that is, x1(t) and x2(t) cannot be obtained 

perfectly from one another by linear filtering 

(Carter and Knapp (1975)), or equivalently for the model 

(3-1) that observation noise j[s present. 

When C   <f>-Gnin2(f>-0 

G „ (f)=G   (f)+G   (f) , 
X1X1    S1S1    nlV 

Gx       (f)-o*G (f)+G (f)   , 
X2X2 slsl n2n2 

(3-14a) 

(3-14b) 

1 ■ ■PIBHM 
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G   (f)=aG „ (f) e xlx2     SlV 
•.12T; I'D 

ci2<*)-»\.1
(f)/<Vi(f>V2<f): 

and it follows that 

J1 » / X*'(f)Q^1(f)X(f)df=J2+J3 

(3-14C) 

(3-14d) 

(3-15a) 

where 

J0= f 
* -CO] 

xx(f) x2(f) 

G   (f)  G    (f) 
xlxl     x2 2 

df 

i - c12(f) 

(3-15b) 

-J3= / A(f)+A"(f)  df, (3-15C) 

x,x (f) 

A(f ).X1(f)X*(f, .  ~i."g ■ (3-X5C) 
X1X1X   X2X2 

In order to relate these results to Hannan and 

Thomson (1973) and others and interpret how to implement 

the ML estimation technique, note that for x.,(t) and 

x„(t) real A (f)=A(-f).  Then (3-15c) can be rewritten as 

-J = / A(f)df+ / A(-f)df=2/ A(f)df 
0 _ «■> _ f¥l 

(3-16) 

Letting TG   (f)^X1(f)x'(f) , (3-16)and (3-15d) can be 
X1X2 

written as 

-J"=2T f\x«' 
j       1 ;       Cl2(0     e'i2TTfD  df.   (3-17) 
"G„   (f)1 -co *iA2   rx^-'l [1-C12(f)] 

Notice that the ML estimator for D will minimi/.« 

J..=J9+JV but the selection of D has no effect on J9. 
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Thus, D should maximize -Jg.  Equivalently, when 

X^OX^CO is viewed as T times the estimated cross- 

power spectrum, TG   (f), the ML estimator selects as 
xlx2 

the estimate of delay the value of x at which 

R
(ML

.
)
(T)=/

00
G (f)j 

c12(f) J2irfT 

where 

W   ;  -~xlV   ?x^J[l-C12(f)]     C df> (3"18a) 

^(f )Xg(f) 
G (f) = 

X1X2 
(3-18b) 

achieves a peak.  That is, the ML estimator selects as 

the estimate of delay the value of T at which the GCC 

Rv
gv   (O  =  / <L  v  (f)W  (f)ej27rfTdf 
X1X2 -oo   1 2 

(3-19) 

achieves a peak, where W (f )=H., (f ^«(f) is an appropriately 

selected weighting function  (Knapp and Carter (1976)) 

The ML estimator is equivalent to one proposed by Hannan 

and Thomson (1973).  The ML estimator can be achieved as 

depicted in Figure 3-3 by shaping x1(t) with filter 

H1(f) and x„(t) with filter H2(f) then crosscorrelating 

the filter outputs and observing what value of delay 

achieves a maximum.  The estimator can also be achieved 

in other forms.  (See section C of this Chapter.) The 

weighting proposed by Hannan and Thomson (1973) is 

1 C12(f) (3-20) 
WML(f) = Gx x (f) xlx2  ' [1 c12(f)l 

where (as required for Q, -1 to exist) C-2(f) f  1 Such 

jBirwii'n'^Mra^ Tfy^ifW 
■m 
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Figure 3-3 Received Waveforms Filtered, Delayed, 
Multiplied, and Integrated for a 
Variety of Delays until Peak Output 
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weighting achieves the ML estimator.  When |G   (f)| 
xlx2 

and C.„(f) are known, this is exactly the proper 

weighting.  An important consideration 1n estimator 

design is the available amount of a priori knowledge 

of the signal and noise statistics.  In many problems, 

this information is negligible.  For example, in passive 

detection, unlike the usual communications problem, 

the source spectrum is unknown or only known approximately 

When the terms in (3-20) are unknown, they can be 

estimated via techniques of Carter, Knapp and Nuttall 

(1973a), which are summarized in appendix A and 

programmed in appendix C.  Substituting estimated 

weighting for true weighting is entirely a heuristic 

procedure whereby the ML estimator can approximately 

be achieved in practice.  Such techniques have been 

referred to as approximate ML (AML) techniques by Box 

and Jenkins (1970) since they are not, truly speaking, 

ML estimation techniques. 

Since the estimation of delay may, in practice, 

be governed by an AML rather than an ML technique, we 

should not expect that more complex models will yield to 

ML techniques without similar heuristic approximation. 

Rather, the estimation of D with moving sources, for 

example, will also require AML techniques and may 

be even more prone to varying interpretations. 



r>3 

3B.  Variance of Hunoral Time Delay Estimator 

The crosscorrelation form of the processor is 

useful in ascertaining the statistical characteristics 

of the delay estimate.  For each of several different 

trials a different estimate of delay might be obtained. 

For example, when the true delay is about 5.0 seconds, 

six typical trials are sketched in Figure 3-4.  One 

actual example case is given in appendix D.  In 
A 

ascending orders, values of D are 4.5, 4.9, 5.0, 5.1, 

5.3 and 5.7.  For trial number 5, depicted on the 

Figure 3-4, an estimate 4.9 is obtained.  However, 

there appear to be many ambiguous peaks in trial 5; 

indeed if the noise had been slightly different, there 

could have been a different delay estimate, such as: 

4.1, 5.7, or 6.5; such an error would increase the 

variation of the time delay estimate.  The derivation of 

variance of D, which follows, does not account for errors 

due to ambiguous peaks.  It presumes that the estimated 

delay is in the neighborhood of the correct delay and 

not on a secondary peak. 

A lower bound on the variance for any delay 

estimator (which is not necessarily attainable) is given 

by the Cramer-Rao bound 

D ~ 

-1 

9 In p (x 1 & ,T) 

"   3T2 

T=D 

(3-21) 
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Figure 3-4  Six Hypothetical Correlator Outputs 
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Cramer-Rao bounds are discussed in Van Trees (1968) 

and Sage and Melsa (1971).  The only part of the log 

pdf that depends on T, the hypothesized delay, is 

J3 of (3-17).  That is, 

id 
E \—7)    In p (x 

•9T 
Ot.T)} = 

3T 
~2 E(~2J3} • (3-22) 

If G   (f)= 
X1X2 

G   (f) 
X1X2 

-j2TTfD   .. 
e ° ,   then since 

G   (f) 
X1X2 

=G   (f) , it follows that 
xlx2 

C12(f) 

E( 2J3)-T/^e (1 _ ci2(fl) 

Hence, the minimum obtainable variance for delay 

estimation is (Carter and Knapp (1976a)) 

(3-23) 

Minimum Var(D)= 

T-l 

T/ (2irf) 2 
C12(f) df 
fl - C12(f)] 

(3-24) 

For the GCC processor with any weighcing 

W (f)=H1(f)Hi(f) we will derive an expiession for the 

local variation of the delay estimator and show that 

the ML weighting, (3-20), indeed achieves (3-24).  The 

determination of the variance of delay estimates closely 

parallels a clever method of MacDonald and Schultheiss 

(1969).  Equivalent to the Var D =Var T -;=D (shown in 

Figure 3-5) is the left to right variation of the zero 

crossing of the derivative of the GCC function output 
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with respect to T (shown in Figure 3-6).  Typical mean 

output of the derivative of the correlator output, z, 

is plotted in Figure 3-5 together with similar curves 

o „ above and below the mean.  For o,, small, so that 

curves are approximately linear between D-o£ and D+OA. 

the magnitude of the expected value of the slope of the 

output at the true value of delay is given by 

3TElZl -~j E Rg  (T) 
9T     

X1X2 
T=D T=D 

where a denotes standard deviation.  Again using 

E twH X1(f)Xj(f) 

(3-25) 

= G   (f), it follows with 
X1X2 

G   (f)= G   (f) 
xlx2    ' Xl 2 

-J2TTD ..    . e J   that 

3T' 
*x x (T) L 12  . T=D 

=T/ (2nf)' G   (f) 
X1X2 

W (f)df.(3-26) 

In order to solve (3-25) for o_-°Ä it is also 

necessary to solve for o  in Figure 3-6.  The fundamental 

problem is to find the variance of the random variable 

z given by 

T 
z » / y1(t)y2(t)dt . (3-27a) 

o 

(For our particular problem we will later assume that 

y,(t) is the output of a filter excited by x^t) and 

y0(t) is the output of a filter excited by xn(t).) 

The variance of z is given by 

"W""-i-m«a* ■■ ■ 



_a_ 
dr 

E  IZI-—ElHXlX2(T»] 

Figure 3-6  Derivative of Typical Output of Genera 1 i./.cd 
Correlator 
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E[z2]   -E2 [z]t 

where 

E[z]   = E [/      y1(t)y2(t)dt] 

= /    E[yi(t)y2(t)]dt 
o 

= TR (0) 
yly2 

(3-27b) 

(3-27c) 

(3-27d) 

(3-27e) 

and 

E[z2] = /T/    E[y1(t1)y2(t1)y1(t2)y2(t2)]dt1dt   .   (3-27f) 
o o 

Evaluation of the fourth moment  in  (3-27f) can be achieved 

under Gaussian assumptions.     In particular,   if y«(t) 

and y2(t) are jointly Gaussian  (and stationary),   then 

E[z2]   = /T/T|R2      (0)+R2 

o    oL yly2 ylyl «W^^W 

+ R
yiy2< WV/VV dtxdt2 (3-27g) 

Letting T=t1-t2 and using (3-27b) and (3-27e), (3-27g) 

becomes 

2 

- --[Vl(T>V2<^
+V2

(T,RV: 
nT+t2)nt2)dxdt2 > 

,>ICT)] 

(3-27h) 

where 

nt) 1 ,  te(0,T) 

rO ,  elsewhere 

Integrating (3-27h) with respect to t? and manipulating 

yields 

°z2 -T !l[R
Vl"

,8
¥2

(,,tRVlV2
(T)R»2'2("](1"^' -<3^i) 

,^__^__*M_Mte*a>««MfeiH 
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For large T (3-271) 

2 
". s TLlRv1y1

(T)V2
(T)+Rv^(T,V2<-T),dT 

By Parseval's Theorem 

2 

(3-27J) 

o Z = T/ fG   (f)G   (f)+G "   (f)]df • 
z      _.1 y^i     y2

y2      yiy2 

If y..(t) is the output of a filter K1(f) cascaded with a 

differentiator and yp(t) is the output of a filter Hp(f) 

cascaded with a variable delay,then 

(3-27k) 

;   (f) = \EAf)\2   (2Tif)2 G 
y^i     ! xixi 

(f) (3-271) 

Gv y (f) y2y2 
^Vf)l Gx2x2<

f> 

G    (f) = H1(f)H*(f)e
j27TfTG    (f) • 

yxy2     
1  2       12 

For T-D it follows, from(3-27k) - (3-27n), since 

W (f )=H1(f)H*(f), that 

(3-27m) 

(3-27n) 

g- ' '1 

2 a T/ 

T=D 
g 

* (f) (2irf)2Gx   (f)G   UKl-C12(l)jdf.(3-27o) er  1        x1x1    X?A2 

Combining (3-25) through (3-27o) yields 

2 

aD=ax 
{£, Vf) (2TTf)<gGXlx1(nGX2x2(fXi-c12 (or (3-28) 

T=--D 
(T)2;     (2nf) V^'w0 df 

which is valid for any W (f).  By substituting the 

appropriate weighting function into (3-28) the standard 

deviation of time delay estimates from each processor 
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can be analytically evaluated. 

Parenthetically, we note that the results (3-28) 

with a particular weighting (3-20) can be related to 

(?0) of MacDonald and Schultheiss (1969) as follows. 

Define the bearing to an acoustic source, similar to 

(3-2), as 

0 = arccosl^r) , (3-29) 

where £ is the (nominal) speed of sound in the 

nondispersive medium.  Consider the case where the 

estimated D equals the true delay D plus a perturbation 

n.  By a Taylor series expansion it follows that 

arccos[4 (D+n)]=arccos[4D]+ —- arccos 
dD w (D-D) 

D=D 

(3-30) 

Thus the bearing error 

e. - arccos[4(D+n)] - arccos 
« 

J± 

and 

dsinö 
•(D-D) , 

(3-31a) 

(3-31b) 

(e2(t))  cr_£  Lar  fi] 
\ D ' dsinG L    J 

(3-32) 

The term dsinö can be viewed as the effective array 

length (sensor separation) physically steered at the 

source.  Assuming equal noise spectra, combining (3-32) 

with (3-28) and (3-20), and introducing a change ol 

variables yields an expression which agrees with (20) 

of MacDonald and Schultheiss (1969) when 9 is interpreted 
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as source (not wavefront) angle.  Combining (3-28) and 

(3-32) suggests that in order to reduce to variance of 

the bearing estimate the observation period and the 

sensor separatton should be made as large as possible. 

(In practice, there will undoubtedly be limitations on 

both sensor separation and observation time.) Further, 

since (3-32) depends on the effective array length 

physically steered toward the source, this suggests the 

desirability of sensor mobility to maximize the term 

dsinß. 

It has been shown that the variance of the time 

delay estimate in the neighborhood of the true delay, 

for general weighting function W (f) is given by 

Var D = 

£:|Wg(f)|2(2,f)2GXiXi(f)Gx2X2(f)[l-C12(f)]df 

/   (2nfV 
X1X2 

(f) 

]2 
W  (f)  df 

g 

'(3-33a) 

which for real processes may also be written 

\2 

g /\ 
/ 

Var D = —" 
V" W^w'K^']12" (3-33b) 

8TT T [ / G 
X1X2 

(f) W (f)f dfi 
p      J 
g 

Notice that a scale factor change in Wß(f) does not 

change the variance of the delay estimator. 

The variance of the ML processor is 

MT  « -°° - —  - v 2, ML *» ={2T . 
o 

-1 

VarML 6 =(2T A 2 »f )\2( t )/[l-C12( ' M
df > 

o 

(3-34) 
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which is the Cramer-Rao lower bound (3-24).  It should be 

reemphasized that (3-33) and (3-34) evaluate the local 

variation of the time delay estimate and thus do not 

account for ambiguous peaks which may arise when the 

averaging time is not large enough for the given signal 

and noise characteristics.  Indeed, when T is not 

sufficiently large, local variation may be a poor 

indicator of system performance and the envelope of the 

ambiguous peaks must be considered  (p. 40 of MacDonald 

and Schultheiss (1969) and p. 41 of Hamon and Hannan 

(1974)).  Further, (3-33) and (3-34) predict system 

performance when signal and noise spectral characteristics 

are known.  For sufficiently large T, these spectra can 

be estimated accurately.  However, in general, (3-33) 

and (3-34) must be modified to account for estimation 

errors; alternatively, system performance can be 

evaluated by computer simulation.  Empirical verification 

of expressions for variance has not been undertaken by 

simulation, because to do so without special purpose 

correlator hardware would be computationally prohibitive. 

For example, for a given Gö  (f), G _ (O, G   (f), 
sl 1      11      2 2 

a,   and averaging time T, an estimated GCC function can 

be computed, from which only one number (the delay 

^These observations were brought to the author's 
attention by C. Stiadling and R. Trueblood of the Naval 
Undersea Center, San Diego, California. 
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estimate) can be extracted.  To empirically evaluate 

the statistics of the delay estimate (which would be 

valid only for these particular signal and noise spectra) 

many such trials would need to be conducted.  We have 

conducted one such trial (with T large) and verified 

that useful delay estimates can be obtained by inserting 

estimates 6x x (f) xlx2 
and C12(f) in place of the true 

values in (3-20).  This might have been expected since 

the estimated optimum weighting will converge to the 

true weighting as T+°°.  (The statistics of the MSC 

estimates are given in appendix B.) In practice, T 

may be limited by the stationarity properties of the 

data, and (3-34) may be an overly optimistic prediction 

of system performance when signal and noise spectra are 

unknown. 

With these qualifications in mind, consider the 

following example of computing the variance of the ML 

time delay estimate.  Let 

c12(f) =|C , 

io, 
fe(0,B) 

otherwise 

Then 

VarMLD = 

.A §' 1-C 

(3-35) 

The strong dependence of the estimator variation to the 

coherence is illustrated in a plot of 1-C versus C in 

Figure 3-7.  Note since 



75 

3|— 

I -C 

c 

Figure 3-7  Variance of Delay Estimate as a Furv! im 
of Coherence for Fixed B and T 
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c = c I i+c+c2+... ] , 1-C (3-36) 

that for C<<1, (3-36) is 

C 
1-C = C (3-37) 

But for C=l-A, where A<<1, then 

C 
1-C 

1-A 1  1 a I 
A      A 

(3-38) 

An approximate comparison of C=0.01 with C=0.99 shows 

the variance changed not by a factor of 100 to 1 but 

10,000 to 1.  The implication is that weakly coherent 

signals do not contribute much to reducing the variance 

of the delay estimate.  That is not entirely so but is 

roughly correct.  For example, high frequency, low 

coherent power may be important.  A more complete 

discussion of the variance of several proposed time 

delay estimators is given in Chapter 4.  Prior to 

Chapter 4, we will discuss other realizations of the 

ML delay estimator. 

3C.  Other Realizations of the ML Estimator 

This section of Chapter 3 will present four methods 

for implementing the ML estimator for delay.  One (and 

only) of the methods, the one considered to be most 

promising, has been programmed.(See appendix C.) The 

program presumes that signal and noise waveforms are 

real and that their statistics are unknown; hence the 

program uses appropriate estimates in lieu of known 
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values, when forming the weighting function. 

The first realization which comes to mind is a 

bank of allowable delays as depicted in Figure 3-8. 

Each data waveform x^(t) and x«(t) is filtered by H (1) 

and H2(f), respectively.  The output of H2(f) is 

delayed for several reasonable values of delay depending 

on the resolution desired, a priori knowledge and 

processing cost allowed.  Each delayed output is multiplied 

with the output of H.,(f).  After integration for T seconds, 

the delay that yields the maximum award is the estimate 

of delay. 

The second method is to realize that the bank of 

delays in Figure 3-8 corresponds to a particular method 

for computing the GCC function.  Indeed we need not be 

particular about the details of how the GCC function is 

estimated so long as it is estimated "accurately." 

The second method uses the overlapped FFT method 

presented by Carter, Knapp, and Nuttall (1973a) to 

compute the estimated cross spectrum and MSC.  The 

estimated cross spectrum is appropriately weighted and 

inverse transformed via an FFT to obtain the estimated 

GCC function.  The delay where the GCC peaks is the 

estimate of delay.  One advantage to methods 1 and 2 is 

that by computing the crosscorrelation for a large 

range of delays the presence of more than one delay 

(acoustic source) can be observed.  There are other 

advantages, too; in the GCC method uncorrelated cross 
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terms vanish and there is no unknown residual bias to 

account for when establishing thresholds (other than 

the type discussed in appendix B). 

If we desire to use a closed loop control scheme to 

automatically adjust the delay estimate D, we can 

instrument the estimator with a derivative in one 

channel much like our discussion of the variance of the 

estimator.  When we are in the neighborhood of the 

correct delay, the output in Figure 3-9 should be 

approximately zero.  Any difference from zero (that is, 

error) is fed back, perhaps smoothed and scaled, and 

used to adjust the delay estimate in order to drive the 

system output to zero.  For estimating more than one 

delay (acoustic source) with this realization, more 

than one variable delay is required.  It should be 

noted as pointed out by Kochenburger (1972) that 

differentiation is a "noisy" process which should be 

avoided.  However, the filter H..(f) and the integrator 

in Figure 3-9 may reduce the adverse effect of this 

realization. 

The final realization to be discussed is the 

method of Carter and Knapp (1976a). In this method 

we re-examine our derivation in section 3A.  In 

■"This idea was brought to tho author's attention 
by J. P. lanniello of the Naval Underwater Systems 
Center, New London, Connecticut. 
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particular, the spectral density matrix (3-6), For 

models like (3-1) which give rise to spectral densities 

Riven by (3-14), can be expressed (suppressing? the f 

dependence) as 

Q - Q +G V*V , 
^x   n ss   ' (3-39) 

where the steering vector 

V'   =   [l,ae-J27rfDl (3-40) 

and,for uncorrelated noises, 

*n = 

nlnl 
0 

0 
n2n2 

(3-41) 

and (for any given f) G  is a scalar. The complete 
SS 

award function to be maximized (3-15) requires knowledge 

-1 of Q The inverse of (3-39) is given by Knapp (1966) 

as 

Q -1 = Q-1 *x    ^n 

-1 * « -1 
G  Q  V V Q ss ^n n 

1 + G V'Q 
_1V* 

ss ^n 

-1 

(3-42) 

For uncorrelated noises Q   does not depend on D; 
n 

therefore, the total award is maximized by maximizing 

JD = - \ I  X*H*H*X df, (3-43) 

where the 1x2 vector filter 

H =[H1(H2] = 
Qnlv>^ 

1+G V'Q _1V* 
L  ss ^n   J 

(3-44) 
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By Parscval's Theorem, (3-43) can bo implemented 

by filtering x1(t) with filter H^T) and filtering 

x2(t) with filter H2(f), then summing, squaring, and 

averaging. 

If we separate from H2(f) that portion dealing 

with the hypothesized delay we can realize the delay 

estimator as shown in Figure 3-10.  Moreover, note that 

Q  V 1 -n   ^ ss 
nlnl 

0 

1 

n2n2 

ae -j2TTfD 
i ss (3-45a) 

. "Ws 
nlnl 

lr    *    -j2iTfD aVGss e 

n
2n2 2x1 

(3-45b) 

Further, 

1+G V'Q "1V* ss  n 
= 1+0ss[l.ae-J2"rL'l 

_i   o    T    i 
Gnini I 

I   ]27TfD 

o  ^— ae' 

= 1+G  [l.ae 
ss l 

-j2TTfD, 

ae 

n,n1 
i l 

j2^rfD 

n2n2 

n2n2 (3-46a) 

(3-46H) 
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= 1 + ss 0 + a ss 

n1n1 n2n2 

(3-46c) 

Thus, the estimator can be realized as shown in 

Figure 3-11.  For low SNR, that is, when 

ss 

SV77 
«1 and " Gss(f)  «1   , 

G    „  (f) n2n2 

-•« -1, 
1 * GssV Qn    V* = X (3-47) 

then the filter following the summation in Figure 3-11 

is approximately a unity-gain zero-phase all-pass 

network.  Note in Figure 3-11 that the form of the 

filters at each sensor depends on the signal and noise 

spectrum.  In particular the estimation of D presented 

here requires filtering in exactly the fashion as the 

detection of a signal arrival presented by Knapp (1966). 

These low SNR filter forms are commonly referred to as 

Eckart filters after early work done in the detection 

area by Eckart (1952). 
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CHAPTER 4 

COMPARISON OF THE ML ESTIMATOR TO OTHER PROPOSED 
SUBOPTIMUM PROCESSORS 

The objective of Chapter 4 is to compare the ML 

time delay estimator with several other processors 

that have been proposed.  From Chapter 3, we know that 

the ML processor will have the minimum local variation. 

Also, the previously derived expressions for the local 

variation of any correlation processor can be used to 

analytically compare other intuitively appealing 

correlation processors.  Additionally, the effect of 

erroneously identifying the signal spectrum will be 

investigated, since that will cause the selection of an 

erroneous weighting function. 

The first section of this chapter presents the 

motivation for the use of crosscorrelation processors. 

The second section compares several such processors, 

and the third section considers the interrelationships 

of these various processors. 

4A. Motivation for Crosscorrelation Processors 

For the model 

xx(t) = s1(t)+n1(t) (4-la) 

x2(t) - aSl(t+D)+n2(t) (4-lb) 

one common method of estimating the time delay D is to 

86 
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compute the crosscorrelation function 

Rx x (x)=E[x1(t)x*(t-T)] , (4-2) 

where E denotes expectation. The argument T that 

maximizes (4-2) provides an estimate of delay.  For 

models of the form of (4-1), the crosscorrelation of 

xAt)  and x„(t) is 

Rx x (T)=otR« 8 (t-l»+Rn n (t) . (4-3) 
xl 2     sl 1       12 

The Fourier transform of (4-3) gives the cross-power 

spectrum 

Gv  (f)-crfi   (f)e"J2irfD+Gn  (f) . (4-4) 
xl 2     slsl nl 2 

If n-(t) and n0(t) are uncorrelated (G   (f)=0), the l       *» n-j n. 

cross-power spectrum between x1(t) and x„(t) is a scaled 

signal power spectrum times a complex exponential.  Since 

multiplication in one domain corresponds to convolution 

in the transformed domain (see, for example, Oppenheim 

and Schäfer (1975)), it follows for G   (f)=0 that 
nln2 

Rv x <T> *aR« e <T> 0*('-D) • (4-5) X1A2       11 

One interpretation of (4-5) is that the delta 

function has been spread or "smeared" by the Fourier 

transform of the signal spectrum.  If s«(t) is a white 

noise source, then its Fourier transform is a delta 

function and no spreading takes place.  An important 
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property of autocorrelation functions is that 

R   (T)<K   (0). Equality will hold for certain srst  - s1s1 

i Tor periodic functions (see, Tor example, Davenport 

(1970), pp. 323-326).  However, for most practical 

applications, equality does not hold for T^O, and the 

true crosscorrelation (4-5) will peak at D regardless of 

whether or not it is spread out.  The spreading simply 

acts to broaden the peak. 

In fact, more generally, when x-(t) and x„(t) 

have been filtered by H., and H«, respectively, then the 

cross-power spectrum between the filter outputs is 

given on p. 399 Davenport (1970) as 

G        (f)-H1(f)Hi(f)Gv  (f) . 
yly2 xl 2 

Therefore, the GCC between x-(t) and x„(t) is 

•NeJ2lTf   df   , 

(4-6) 

g 
:1X2 

R %  (T)- / Wff)G (f}e* 

where 

W  (f)=H1(f)H*(f) 

(4-7a) 

(4-7b) 

denotes the general frequency weighting. The particular 

weighting selected is denoted by a change in the sub- 

script g. 

For all of the proposed weightings which we will 

investigate, W(f)=W*(f) and W(f)=W(-f); that is,W(f) is 

real and even.  These properties are also held by the? 

minimum variance ML weighting. 
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To distinguish which of the proposed general 
i       .' 
1 
i weightings has been applied, we denote 

i I 
yly2    X1X2 

and thus 

Gv v (f)= W(f)[aGQ  (f)e"j2TrfD+G   (f)] .    (4-8b) 
vly2     g     sl 1 nl 2 

When the noises are incoherent, taking the Fourier 

transform of (4-8b) yields 

Rg   (T)=R  (T)0aR B   (i)©i(r-D) , (4-9) 
X-X-  '      WW S1S1 

where R (T), the inverse Fourier transform of W (f), is 
ww '' g 

even.  This being the case, the true GCC will also peak 

at D regardless of the specific weighting.  Thus one 

might be puzzled as to why any weighting is needed. 

Indeed, the crosscorrelation function alone is a useful 

technique for estimating time delay. 

Two practical reasons why prefiltering is desirable 

are evident.  If the noise is coherent, for example, if 

G   (f)=G „ (f)e"j2lTfD2 , (4-10) 
nln2    S2S2 

then 

Rx x (T)=Rww(T) • (otRs s (T) ® *(r'D) 

+ K  - (T)0«(r-D2)1 . (4-11) 
S2S2 *   J 

It is clear, from (4-li), that the convolutions by 

R   (T) and R   (T) will produce two peaks which may 
slsl        S2S2 
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bo spread into one another.  The convolution by R (T) 

ran aid to undo this smearing.  For a single delay 

broadening of the delay peak may not bt a serious 

problem. However, when the signal has multiple delays, 

the true crossccrrelation is given by 

Rx x <T>=R« . (T)©£ a.6(r-D.) . (4-12) 
xlx2    slsl     1 x    1 

In this case also, the convolution with R   (T) can 
slsl 

spread one delta function into another, thereby making 

it impossible to distinguish peaks or delay times.  Under 

ideal conditions where Vfpv  (f)=G   (f), W (f) should 
kI"2 ^«2 

be chosen to ensure large sharp peaks in R   (T) rather 
yly2 

than a broad one (see Figure 4-1), since this will ensure 

good time delay resolution. 

There is a second important reason why prefiltering 

is desirable.  In practice, only an estimate G   (f) 
xlx2 

of G   (f) can be obtained from finite observations of 
xlx2 

x1(t) and x2(t). Thus we can never exactly obtain the 

crosscorrelation from a limited amount of time data. 

Because of the finite observation time, then, R   (T) 
xlx2 

can only be estimated. For example, for real ergodic 

processes an estimate of the crosscorrelation is given 

on p. 327 of Papoulis (1965), as: 

V2<T>- r-TT /T
Tx1(t)x2(t-T)dt (4-13) 
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BROAD ESTIMATE 

SHARP ESTIMATE- 

Figure 4-1 Broad and Sharp Estimates of Delay for 
Infinite Averaging 
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where T represents the observation interval. For limited 

duration data records, the accuracy of the delay estimate, 

D, can be improved by prefiltering x-(t) and Xg(t) 

prior to the integration in (4-13).  In practice we can 

compute (4-13) by weighting the estimated cross spectrum 

and computing an inverse Fourier transform to obtain an 

estimated GCC as follows: 

(4-14) R<g>   (TW Wff)Gx      (f)eJ2irfTdf . 
12 -» K 12 

W„(f) now serves to improve the estimate of R        (T) g XjXg 

used to estimate time delay. 

In practice, depending on the particular form of 

W (f) and the a priori information, it may also be 

necessary to estimate WAt).    For example, when the role 

of the prefliters is to accentuate the signal passed to 

the correlator at those frequencies at which the SNR 

is highest, then W (f) can be expected to be a function 

of signal and noise spectra which must either be known 

a priori or estimated. 

Hence, we see that the true crosscorrelation 

function, for the model (4-1), is sufficient to 

determine the correct time delay; but for practical 

(finite data) considerations it is desirable to prefilter 

x.(t) and x«(t) prior to crosscorrelation.  Indeed, the 

problem of selecting 1(f) to optimize certain performance 

criteria is not new and has been studied by several 

investigators.  (See, for example, Akaike and Yamanouchi 
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(1963), Bangs (1971), and Hannan and Thomson (1971).) 

Our intuitive discussion of sharply peaked 

estimators may suggest certain types of weighting. 

However, sharp peaks are more sensitive to errors 

introduced by finite observation time, particularly in 

cases of low SNR.  Thus, as with other spectral 

estimation problems, the choice of W (f) is a compromise 

between good resolution and stability.  In the subsequent 

section we compare several promising weighting functions 

proposed previously in the literature. 

4B.  Comparison of Proposed Processors 

The preceding discussion provides background for 

the role that W (f) is to play.  Now the six versions 

of the generalized crosscorrelation function listed in 

Table 4-1 will be examined individually.  In the process 

of comparing the processors in Table 4-1, there will be 

a tendency to want to look at some simple cases, for 

example, equal white noises and strong (or weak) white 

noise signals.  In this regard, it can be shown for the 

case where G „ (f)"G_ „ (f)=G (f) is equal to a 
n<n.    no o 

constant times G_ _ (f) (whether or not the signal is 
81S1 

white) that five of the processors in Table 4-1 provide 

for the identical frequency weighting, except for a 

constant.  (The crosscorrelation processor (W(f)«l,Vf) 

is a delta function smeared out by the Fourier transform 

of the signal (noise) power spectrum.)  In these cases. 
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Table 4-1. Proposed Processors 

Processor Name 

Weight 

W(f)=H1(f)H*(f) 

1. Roth Impulse Response 1/Gx x (f) xlxl 

2. Smoothed Coherence 
Transform (SCOT) 1/ 

V X1X1   X2X2 

3. Phase Transform (PHAT) 1/ G   (f) 
X1X2 

4. Crosscorrelation 1 

5. Eckart Gs s (f)/ slsl 
G   (f)G    (f) 
nlnl    n2n2 

6. Maximum Likelihood 
(ML) 

c12(f) 

Gx x (f)! xl 2   1 i-c12(f) 
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the delay estimate from each of these five processors 

will have the same variance. Hence, a complete comparison 
s 

1 I can only be made when detailed signal and noise character- 
i I 
\ istics are provided.  Such information is largely 
! I 
\ dependent on the particular application ana a detailed 
i 

comparison is therefore beyond the intent of this work. 

For underwater acoustic applications, characteristics 

of the radiated and self noise of ships, submarines, and 

! torpedoes and the noise background of the sea are given 

by Urick (1967).  For more fundamental signal and noise 

characteristics, it is useful to r wide a brief example 

of using (3-33) and (3-34). Suppose the example 

corresponds to (4-1) where a«l; G (f)«l, Vfe(-B.B) ss 

otherwise G(f)-0; G n (f)*G „ (f)-l,Vf.  It follows ss      n1n1    n2n2 

from (2-1) and (2-2) that 

C12(f) - -Jsai!> .(4-15) 

tWf)+Vi(f)1IGss(f)+%n
2
(f)1 

c12(f) 

Hence, 
jO.25  , Vf (-B.B) 

(O     , otherwise . 

Other values are given in Table 4-2. 

4B1.  Roth Processor 

The weighting proposed by Roth (1971) 

Vf> " G7-(TT ' (4"16) x
lxl 

where the subscript R is to distinguish the choice of 
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Table 4-2, Comparison Case Data 

fe(O.B) fe(+B,H) 

G   (f) 
slsl 

Gn _ (f)-Gn _ it) 
nlnl    n2n2 

xlxl    X2X2 

Gx x «) xlx2 

c12(f) 0.25 0 
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1 

j 

Wg(f), yields" 

S<«) (tW" ^llZ «J»*'df . <«_„, 
xlx2   -«  x^i 

Equation (4-17) estimates the impulse response of the 

optimum linear (Wiener-Hopf) filter } 

Gx x (f) 

V"' o,1'<»> ' <4"18) X
1X1 

which "best" approximates the mapping of x„(t) to x1(t) 

(see, for example, Van Trees (1968), Carter and Knapp 

(1975) and the discussion of Theorem 2-3 ) . If n-(t)?tO, 

as is generally the case for (4-1), then 

Vi(f,Vf,Vf) • (4-19) 

and ideally 

(R) -aGs,s <f> 
S,a(t)-acx-D)#/  ra^,^^ j2ltfT 

df.(4-20) 

Therefore, except when G   (f) equals any constant 
nlnl 

(including zero) times G   (f), the delta function will 
slsl 

again be spread out.  The Roth processor has the 

desirable effect of suppressing those frequency regions 

1As discussed earlier, W(f) may have to be estimated 
for this processor and those which follow, because of a 
lack of a priori information. In this cgse, (4-16) may 
require that G   (f) be replaced with G   (f). 

xl*l xlxl 
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where G_ „ (f) is large and 6v v (f) is therefore "n1n1 

more likely to be in error, 

Prom (3-33), 

xlx2 

R            /.      x1x1 
Var(ß)= -5 i-1 

* —(l-C)f df 

8TT2T ; 
I o X1X2 

-i—f2df 
-x1x1 

(4-21) 

In the example of Table 4-2 this becomes 

B     2     -\ H     2 
I    t      I df+/n f  ldf O 4 B      

8TT2 T zBf24df 
o      i     . 

(4-22a) 

B3+ iH3-iB3 

8 2m„6 
9 

(4-22b) 

when B=H (4-22b) agrees with (3-35) as expected; but 

if H is large in comparison with B, the variance of the 

Roth processor will be large in comparison to the 

Cramer-Rao bound (3-24). 

4B2.  Smoothed Coherence Transform 
A 

Errors in G „(f) may be due to frequency bands 
xlx2 

where G   (f) is large, as well as bands where 
n2n2 

G   (f) is large. One is therefore uncertain whether 
nlnl 

to form W0(f)=l/G„ v (f) or W„(f)-1/Gv v (f); henco, x, x, x 1 
X2X2 
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the smoothed coherence transform (SCOT) proposed by1 

Carter, Nuttall, and Cable (1973) yields 

W (f) = 1/ ,  . (4-23) 

X2X2 

This weighting gives the SCOT 

R (T) =/ Yv v (f)e
j2,Tfrdf , (4-24) 

X1X2     » X1X2 

where the coherence estimate' 

x  (f) 

Yx  (f)£ —  1 2        . (4-25) 
12    fW1}\*2(1) 

For H1(f)=l/ r-g ^jy and H2(f)=1/ ^ ^- , the 

1 xlxl V X2X2 

SCOT can be interpreted as prewhitening filters followed 

by a crosscorrelation. When G   (f)=G   (f), the 
xlxl    x2 2 

SCOT is equivalent to the Roth processor.  If n.,(t)^0 

and r2(t)^0, the SCOT exhibits the same spreading as 

the Roth processor. 

lThe SCOT was originally proposed by G.C.Carter, 
A.H. Nuttall, and P.G.Cable in 1972 and successfully 
applied to actual data by G.C.Carter and P.G.Cable in 
1972 and Brady (1973) for part of his Ph.D. work. 

2 A more standard coherence estimate is formed 
when the autospectra must also be estimated, as is 
usually the case. (See Carter, Knapp and Nuttall (1973a).) 
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From (3-33) 

Var(D)= 
Sjf [1-C(f)]df 

8IT
2

T / r 
L O 

f Wüi 
(4-26) 

Note as C(f)»-1, the numerator becomes small and the 

denominator becomes large. For our example, since 

G   (f)=G   (f) the SCOT has the same variance as 
xlxl    X2X2 
the Roth processor. 

4B3. Phase Transform 

To eliminate the spreading evident above, the 

phase transform (PHAT) uses the weighting 

Wp(f)= 
Gx x (f) xlx2 

(4-27) 

which yields 

JP) 
X1X2 

- Gx x (f) 

(T)- / rA~  e^df 
Gx x (f) X1X2 

(4-28) 

For the model (4-1) with uncorrelated noise (that is, 

G   (f)-0), 
nln2 

G   (f) 
X1X2 

=aG . (f) 
slsl 

(4-29) 

T'he PHAT was originally suggested by G.C.Carter, 
A.H. Nuttall and P.G. Cable in 1972. 
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Ideally, when Gv  (f)-Gv  (f), 
*1 2    xl 2 

Gx x (f) 

G^TJ - ."(f W2*" (4-30) 
X1X2 

has unit magnitude and 

4Px (T)-fi(t-D) . (4-31) 
X1X2 

The PHAT was developed purely as an ad hoc 

technique. Notice that, for models of the form of 

(4-1) with uncorrelated noises, the PHAT (4-28), 

ideally, does not suffer the spreading that other 

processors do. 

From (3-33), 

(P)A   O
2 i  (1-C) df 

Var(D) - -2 fa -   ^  . (4-32) 

8ir2T [vH: 
( 1 —" *i 

As Ol, *■ -I-■* -"0, so the processor will behave well 

(that is, low variance). However, as expected, as 00 

the variance grows without bound.  For the example in 

Table 4-2, assuming the weighting is zero for f>H , 

Ä. v2"f *hixy2-¥-« .        (4-33, 

■ L O 

12 

8TT
2
T / f2df 

Except when H*B, this processor will suffer a complete 

breakdown as C tends to zero. When H=E, we obtain the 

same variance as the Roth and SCOT processors for then 
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(as indicated earlier) G„ n (:0=G n (f)»Go _ (f) and 
nlnl    n2n2    S1S1 

all processors behave equally well,  For models of the 

form of (4-1), the poor behavior of the PHAT suggests 

that W(f) should not be Inversely proportional to 

signal power.  The crosscorrelator is one method of 

avoiding the application of weight inverse to signal 

characteristics. Two other processors in Table 4-1 

also assign weights or filtering proportionate to SNR: 

the Eckart filter (Eckart (1952)) and the ML estimator 

or processor of Hannan and Thomson (1973).  We now 

examine these three processors in depth. 

4B4.  Crosscorrelation 

The variance of the dela$ estimate from the 

crosscorrelation processor is 

XC  - 
Var(D)= 

/°°f2Gx1x1
Gx2x2(l-C)df 

(4-34) 

8TT
2
T 'V o X1X2 

'df 

For the example case in Table 4-2, (4-34) yields 

XC A 

Var(D)  = 

°° 2       3 H 2 /   f   -4-fdf+/  f   ldf 
o B 

"2{! 
12 

f2-ldf 

R3.   H3    B3 

B +  3  "  3 
2     n5" 8»   T 1 

(4-35a) 

(4-35b) 
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For H=B, (4-35b) agrees with earlier results.  Tre 

crosscorrelator actually performs better than either 

the SCOT or the Roth processor for the particular 

example case in Table 4-2.  In general, one can expect 

to find cases for particular spectra where the cross- 

correlator performs worse than the SCOT or Roth processors. 

4B5.  Eckart Filter 

The Eckart filter derives its name from work 

in this area done by Eckart (1952). Derivations in 

Knapp (1966), and Nuttall and Hyde (1969), are outlined 

here briefly for completeness. The Eckart filter 

maximizes the deflection criterion, namely, the ratio 

of the change in mean correlator output due to signal 

present to the standard deviation of correlator output 

due to noise alone.  For long averaging time T, the 

deflection has been shown to be 

df * 

(/^(«HjcOG^fw] 

/ |H1(f) H2(f) 

(4-36) 

G   (f)G   (f)df 
nlnl    n2n2 

where L is a constant proportional to T, and G   (f) 
sls2 

is the cross-power spectrum between s.,(t) and s2(t). 

For the model (4-1) G   (f)=aG   (f)exp(j2*fD). 
sls2     sl 1 

Application of Schwartz's inequality indicates that 

H1(.')H*(f)=WE(f)e
+J2lTfD (4-37) 



104 

maximizes d~ where 

ctG 

Vf)  = "a 
slsl 

(f) 

hW" 
(4-38) 

Notice that the weighting (4-38), referred to 

as the Eckart filter, possesses ^ome of the qualities 

of the SCOT.  In particular, it acts to suppress 

frequency bands of high noise, as does the SCOT.  Also 

note that the Eckart filter unlike the PHAT attaches 

zero weight to bands where G   (f)=0.  Tn practice, 
slsl 

the Eckart filter reauires knowledge or estimation of 

the signal and noise spectra. For (4-1), when a=l this 

can be accomplished by letting 

WE(f)= 
X1X2 

(f) 
X1X1 

(f)- 
X1X2 

(f) Gx x(f) *2 2 
G   (f) 
X1X2 

(4-39) 

The variance of the time delay estimate using Eckart 

filtering is 

ss 

Var(D)   = 

/     f2 G 2    G    2    X1X1  X2X2 
o nlnl  n2n2 

(l-C)df 

8TT  T[T   f 
o X1X2 

ss 
2 

df 
nlnl   n2n2J 

For  the example case  in Table 4-2, 

Var(D)=     Jof 44  df 

8-rr2llT r* f2df] 

(4-40) 

(4-4 la) 
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41b) 

's»  I 

) 

|ir2TB
3 

that is, for this example the Eckart filter achieves 

the Cramer-Rao lower bound (3-24).  In general thi^ 

will not always occur.  In the next section we see 

that (4-41b) is the variance achieved by the ML 

processor.  This might be expected since both the 

Eckart and ML processors pass nothing in the signal 

frequency band (B,H) and both have constant weighting 

over the band (0,B).  Actually, the ML estimator is 

closely related to the Eckart filter, as will be seen 

in section 4C of this chapter. 

4B6.  Maximum Likelihood Processor 

As shown in Chapter 3 the ML processor always 

has minimum variance.  For the Table 4-2 example, the 

correct weighting from (3-20) is W(f)=l/3 for fe(-B.B) 

and zero otherwise.  Now from (3-34) 

VarML(D) 

1-1 
8 TA3 

3 Tw 8 (1-42) 

Thus, the minimum variance depends on a time bandwidth 

2 
product, TB multiplied by the bandwidth squared, B . 

Suppose an error had been made identifying the frequency 

band of the signal.  Then if we presumed that the 

weighting was W(f) = l/3  for, say, f c(-aB ,aB) , in lieu .«1 

f (-B.B), we would obtain from (3-33) 
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when a>l 
i-l 

| T.V (4-43) 

which reduces to (4-42) when a=l. For example, in this 

case, a 10 percent error (that Is, a=l,l) leads to more 

than an 11 percent increase in variance.  If a<l then 

(3-33) becomes 

Var(D) = -~ 
8 TV2R3 5 TIT B 

-1 
(4-44) 

which agrees with (4-42) when a=l. Thus a 10 percent 

error (a=0.9) leads to an increase in variances of 

37 percent. Thus our example suggests it may be more 

desirable to let in extra noise than to omit signal 

power.  Finally, if our error led to processing the band 

fe(aB,B) and fe(-B,-aB), we would obtain 

-1 
Var(D) 

1-& 
| T,V (4-45) 

which agrees with (4-42) when a=0. 

The ratio of variances (4-45) to (4-42) for 

a<<l is 

1-a* 
1+a* (4-46) 

If we again err by 10 percent (i.e., a=0.1), then (4-46) 

yields 1.001 or little change in the variance.  (This 

error is at lower frequencies in the signal band and 

as (3-33) suggests, proper weighting is most critical 

at higher frequencies.) Thus, for this example, 
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depending on how we make a 10 percent error in frequency 

band selection, we can have anywhere from 0.1 percent 

to a 37.0 percent increase in variance of the time 

delay estimate. 

4C.  Interpretation of Relationship Between 
Correlation Processors 

For the case where a=l 

2 
6 „ (f) 

l S1S1 f)= 1 i 
MLV '  G„ „ (f) IfG I (f)+G " (f) 

(4-47a) 

s.. s. 
A   i 

(f) 

G   (f)G   (f) 
nlnl   n2n2 

Gs s (f)  Gs s <f) 
14.      11      +     11 1 ~G   (77  G   (f) 

n2n2      nlV 

which agrees with equation (28) of MacDonald and 

Schultheiss (1969) if in (4-47b) G„ n (f)-G„ n (f). 
"l"i    n2 2 

(4-47b) 

1 

For low SNR, 

S1S1 slsl 
G-VTTT   

<<X
 

and G-~Tn- K<1 
n
lnl n2n2 

it follows that 

Gs s  (f) 

wML(f); G—rm—ui= wE(f) ; (4-48) 
n
lnl n2n2 

Notice that agreement requires «*1. 
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that is, for a=l and low SNR, the ML processor is 

identical to the Eckart filter.  Similarly, for low 

SNR, 

Vf) = VG 
-i-i(f)Va

(f) 
(4-49) 

Therefore, if a=l, 

WML<f> * 

G0   (f) slsl 

^-l(f)V2(f> 
Wg(f) 

Furthermore, for Gn n (f)=G„ r (f)=G(f), n.n.    nono    nn 

(4-50a) 

s1s1(f) 

Wf> S G (t) Ws(f) = nn 

slsl 
(f) 

Gnn(f) nn 
Wp(f) (4-50b) 

Thus, under low SNR approximations with a=l, both the 

Eckart and ML prefilters can be interpreted either as 

SCOT prewhitening filters with additional SNR weighting 

or PHAT prewhitening filters with additional SNR squared 

weighting. 

We can rewrite (4-47) as 

1 

WML<f>= 

nlnl n2nl 

V GnlnlGn2n2 +V
GnlnlGn2n2 jfVTVj 

S181 n1n1 n2n2 

(4-51) 

for uniformly high SNR, 
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m  wML(f) =. __i_— . (4_52) 
J G   G _ \ n.n, n2n„ n0n0 nHn 2 %0 "2"2  "1"*1 

S1S1 

that is, giving the weighting characteristics similar 

to the SCOT at low SNR.  Note that, like the ML processor, 

the PHAT computes a type of transformation on 

(f) xx 
i* exp j<Kf)  . (4-53) 

W1A2 

X1X2 
77T 

However, the ML processor, like the SCOT, weights the 

phase according to the strength of the coherence.  From 

p. 379 of Jenkins and Watts (1968),  comparing (B-22) 

with equation (9.2.19) and (9.2.20) of Jenkins and Watts 

(1968) the variance of the phase estimates is given by 

Var $(f )* ^^-JIN) • (4-54) 

where N is the number of independent FFTs used to 
A. 

estimate phase.  Notice as C+l, Var <J> ->0.  Thus, 

Comparison of (4-55) with (4-53) reveals that the ML 

estimator is the PHAT inversely weighted according to 

the variability of the phase estimates. 

The ML processor has been compared with five 

other candidate processors to demonstrate the inter- 

relation of all six estimation techniques.  The 

derivation of the ML delay estimator (in Chapter 3), 

—*"^"^—'      ■■w»»w 
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I 

together with its relation to various ad hoc techniques 

of intuitive appeal (in this chapter), suggests the 

practical significance of ML processing for estimation 

of time delay and, thence, bearing.  The remainder of 

this thesis deals with extensions of the ML processor 

to more complex models and a discussion of the results 

and suggestions for future work. 



CHAPTER 5 

MORE COMPLEX MODELS 

Chapter 3 answered, for a simple model, the 

fundamental question of this thesis: What is the 

"best" method of estimating time delay" Chapter 4 

compared this method with several other candidate 

processors.  Chapter 5 considers three conceptually 

straightforward extensions of the problem considered 

in Chapter 3:  (1) multiple source models, (2) moving 

source models, and (3) multiple sensor models.  The 

"solution" to these problems is more difficult than 

the problem of estimating a single time delay for a 

stationary source.  For example, in the multiple source 

and multiple sensor models, there is more than one 

delay to be estimated.  Indeed, if we treated multiple 

sources and multiple sensors together, we would need to 

estimate a parameter vector for each source, corres- 

ponding to the (relative) delays between that source 

and each sensor; thus, a (nonsquare) matrix of delays 

(comprised of a parameter vector for each source) 

would need to be estimated.  Finally, it is necessary, 

in effect, to estimate the motion of each source so as 

to be able to Doppler correct the received signals 

prior to crosscorrelation.  Failure to apply some sort 

111 
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of Doppler correction will cause the received signals 

to be essentially uncorrelated even if a common (but 

frequency shifted) signal is present. 

Both notationally and analytically, the methods 

applied to estimate the unknown parameters become more 

complex than the methods in Chapter 3. Yet even in 

Chapter 3 where a "solution" for the ML estimate of 

tim^ delay was possible, we noted that, in practice, 

it would be necessary to resort to an AML estimation 

technique; for more complex models there is no reason 

to expect that the solution will become simpler; indeed, 

in this chapter (especially with regard to moving 

sources), we appeal more to approximate and ad hoc 

techniques based on the ideas of Chapter 3 than to 

rigorous methodologies.  The reasons for this approach 

are apparent in section B and have to do with the 

nonstationarities introduced by the source motion. 

5A.  Multiple Source Models 

The simplest multiple source model is a two 

source case where receiving sensors are physically 

steered at one source and the second source acts as an 

interference.  Such a model is depicted in Figure 5-1 

(Carter and Knapp (1975)).  Mathematically, 

xx(t) s1(t)+s2(t)+n1(t) (5-la) 

and 

x0(t) s1(t)+s2(t-D)+n2(t) (5-lb) 
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(The effect of an interfering source on detection is 

considered by Schultheiss (1968).) The problem is to 

estimate the parameter D.  In effect s..(t) accounts for 

correlated noise insofar as estimation of D is concerned. 

When s-(t) and s„(t) are stationary uncorrelated 

signals with power spectra G . (f) and G   (f) and 
slsl       S2S2 

when n.,(t) and n„(t) are stationary uncorrelated noises 

with the same power spectrum G (f), it has been shown 

by Carter and Knapp (1975) that 

(f) = 
xlx2 

1+ 
°s2s2(f)  -j2iTfD 

S1S1 

slsl 

In the special case when G (f)=0 and G „ (f)~G „ nn s1s1 s2s2 

(5-2) 

(f) 

Y (f) = l(l+e-J2lTfD)=e-jnfDcosufD 
xlx2 2 

(5-3) 

and 

C (f)=cos2irfD = i(l+cos2TrfD) 
X1X2 

(5-4) 

Because of the sinusoidal oscillation between 0 and 1 

of C   (f), the Fourier transform of C5-3) will exhibit 
xlx2 

a peak at the value of time delay.  This suggests the 

usefulness of computing the Fourier transform of the 

coherence or SCOT (Carter, Nuttall and Cable (1973)). 

A more general, multiple source, two sensor model is 

x.(t) = I  s.(t)+n1(t) 
1     i 

x2(t) = ü iis.(t+D.)+n2(t) 

(5-5a) 

(5-5b) 
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The limit on the sum depends on the number of sources. 

Since each source will be presumed to be independent of 

the others, the sources will be mutually uncorrelated. 

For the general two source case depicted as a multi-Input, 
1 

multtoutput system in Figure 5-2, it follows that 
I 

x^t) = s1(t)+s2(t)+n1(t) (5-6a) 

x2(t) = a1s1(t+D1)+a2s2(t+D2)+n2(t) (5-6b) 

and therefore 

Gx1x1<
f> - tis1s1

(f'+Gs2s2<"
+G„1„1<

f» <5-7a> 

I Gx2x2<
f> " <H\Sl<'>V

G
S2s2<

f>+Gn2n2<
f>      <5-7") 

and 

V,<f> * alGs1s1<
f'--J2"Dl (5-70) 

*  s2 2 

+ Gn n (f)  • nln2 

However, we can accommodate coherent noise through the 

inclusion of additional sources so that without ioss of 

generality G   (f)=0 for all frequencies.  From the 
nln2 

two-source model with incoherent noise, we generalize that 

Gx x (f) = Gn n <n + j:Gs a <f> <5"8a> X1X1      nlnl   i sisi 

Gx x (f) = Gn n Cf)+Eai
aGa _ (f) (5-8b) x2 2      n2 2   i   Ti 

and 

G   (f) = Z«,G   (f)e"J27TfDi • <5"8c> 
X1X2     i i siSi 



116 

1 

X 

3      ®- 4» 
~                rH 

\ 

is
o

r 
  M

od
e 

Q 5           w 
0) 

CO 

0 

A                        / 
0 

3 
0 

03 

0 

E-< 

4 si 

/ \                  p a c 
Ü 

d" \h CM 

Ö m 

/^ 

0) 
u 
3 
he 
•H 
h 



117 

In the ML estimation procedure earlier the determinant 

of Q could be ignored since it did not depend on D. 

Now, however, for the two-source model, we set; 

(suppressing f) that 

G» « +G - +G„ „.«,0 . e"J2llfDl+a9G   e"J
27TfD2 

S1S1 S2S2 nlnl  X  slsl        2 S2S2 

„ r   «+J2irfDi4.« r    +j2irfD0  _ 
alGslSl

e     1+a2Gs2s2
e     2> G; X2X2 

(5-9a) 

does depend on (D-D2). For example, even when 

G   *G   "G , a-«a„sl and G   -G   =G 
n^ n2n2 nn' 1 2      sisi S2S2 

!(2Ga«
+Gnn)2-G«B

2(e"J2irfDl+e-J2lTfD2)(e+J2irfDl+e
+J27rfD2) 

(5-9b) 

Q-4G    2+2G    G    +G    2-G    2|W^2Trf <VDl>+e+J2irf (Wl ss   ss nn nn  ss j 

(5-9c) 

In general, |Q| depends on the parameter vector 

(D-.Dg). Thus, we must be concerned by the |Q| as well 

as the exponent in (3-9), for the multiple source model. 

Specifically, we want to maximize the sum of both (3-17) 

and the logc|Q term.  The latter is given by 

N -i 
h - E  log |Qi 

k--N   e 
(5-10) 

but 
xlxl  xlx2 

G *   G 
xlx2  X2X2 

G   G   (1-C   ) . 
xlxl X2X2   X1X2 

(5-11) 
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Thus, 

But log G   G    does not depend on (D1,D9,...) so that e x1x2 x2x2 i A 

the critical parameters in the |Q| term are approximately 

given by 

CO 

- h  / log Jl-C x (f)]df . (5-13) 
6      _oo   e     X1X2 

In practice, x- and x„ will have finite bandwidth; 

therefore the limits of the integral (5-13) will also be 

finite.  It is noteworthy that the second term is related 

to the definition by Shannon (1949) for the amount of 

information about x„(t) contained in x^(t).  More 

specifically, Gelfand and Yaglom (1959) and Nettheim (1966) 

have shown that the amount of information about x contained 

in y (or vice versa) is given by 

I  = - \  /log [1-C  (f)] dT, (5-14) xy   2    e   xy 

where  the limits of integration are over the nonzero 

range of the integrand.  Hence, for C (f)=0, there xy 
2 

is no information (in the linear sense)' contained in one 

Thfse results can be combined with (2-79) for 
models like Figure 2-5 to show that Ix„ is the integral 
of the logarithm of 1 plus received signal to noise ratio 

2 
See Carter and Knapp (1975) or Chapter 2 for a 

discussion of nonlinear relations which can yield 
Cxy(f)=0 and yet y(t) can be entirely due to x(t). as for 
example, when y(t)=x2(t). 



119 

time series with regard to the other. Alternatively, if 

C (f)=l, for some particular f , then there is an 

infinite amount of information about x(t) knowing y(t) 

at the particular freauency f . More generally, for 

nonzero C (f)<l, the amount of information depends on xy 

the bandwidth (limits of integration in (5-14)) and the 

MSC in that band. 

Thus, following (3-15) and (5-10) through (5-14), 

we see that it is desired to maximize 

J^T 

oo G 

^.x/2' G 

G   * 
X1X2 X1X2 df 

12-» "Jx1x1  x2x2   xxx2 

(5-15) 

For the two source model, 

J=»T 

00 G   a1G   e 
1 o ®1 1 

I „ +2/  ±-* ^ 
^2 _. 

+J27rfD! 

df + 

Ql 

2/ ■ 
— 00 

» G   a„G   e J   * 
xl 2  s2 2 df (5-16) 

or for two-sensor, multiple source model we maximize 

J=T 

G„ „ (f)Ea,G„ „ (f)e+J27TfDi 

xlx2 -» 

Xlx2  i x  sisi 

lQ(f) 
df (5-17) 

Thus, the important regions of the estimated cross 

spectrum for determining D. are these frequency bands 

where G   (f) is large.  However, even when the signal 
s.si 

spectrum is strong, if the intersource interference is 

such that the intersensor coherence C   (f) is low, the 
X1X2 
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weight attached to the estimated cross spectrum is 

degraded, as shown above. 

While we can estimate auto spectra and coherence 

between sensors, more sophisticated methods must be 

applied in order to astimate the source signal spectrum. 

The mathematics shows how to process for known signal 

spectrum.  In the communications problem, signal spectrum 

will generally be known, although a, which more generally 

could be a function of frequency, will probably not be 

known.  In other problems, methods involving classification 

and data bank retrieval need to be studied.  In the 

absence of a priori knowledge, we might assume that 

every frequency band where the coherence was high was 

a different source.  Tracking (that is, estimating 

bearing continuously) for each frequency band then 

becomes a classification problem where the number of 

sources is ascertained by noting the number of clustered 

sources.  The fewer the sources for a given total source 

power the easier tracking will be.  However, repeated 

clustering analysis will be desirable to ascertain 

whether two or more sources are being classified as one. 

In "real world" problems, there may well be more 

than one source;hence, the application of Chapter 3 

results must include the concepts of multiple sources. 

There are other concerns, too, in the practical 

application of our Chapter 3 results.  The next 

generalization which we will discuss is the moving source 
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problem. 

5B.  Moving Source Models 

The model we shall consider is a simplified 

one characterized by the observed waveforms (Carter 

and Knapp (1976b)) 

x1(t)»s(t)+n1(t) 

y2(t)=as(ßt+D)+n2(t) , 

where s(t), n-(t) and n„(t) are zero mean jointly 

stationary Gaussian random processes which are mutually 

uncorrelated.  The problem addressed here is ML 

estimation of the time compression and delay parameters 

8 and D, respectively; the problem is related to the 

Doppler shift work by Van Trees (1971).  The character- 

istics of the signal and noise are such that x.(t) is a 

member function of a zero mean stationary Gaussian 

random process.  Further, despite the attenuation, delay 

and time compression, y«(t) is also stationary and 

Gaussian.  That is, both autocorrelation functions given 

by 

(5~18a; 

(5-18b) 

Rx x (T) VI(T)+IWT) (5-19a) 

and 

Ry2y2
(trt2>"Rn2n2

(t2"tl)+aRss(8(t2'tl)) 

depend only on the time difference tg-t«. 

However, the crosscorrelation for model (5-18) 

depends on 8 as follows: 

(5-19b) 
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Rx y (VV-aEls(tl)s(ßt2+D)1"aRss(tl~at2~D) 

Ry x (t1,t2)=aE[s(3t1+D)s(t2)]=aRss($t1tD--t2) 

As required, 

(5-19c) 

(5^19d) 

(5-20) 

Notice the crosscorrelation depends on ß as well at X. 

and tg, and not simply the difference between t*  and t,. 

Hence the processes x1(t) and y2(t) 
ar^ not jointly 

second order stationary, but depend on the absolute time 

origin. Thus, the introduction of time compression ß in 

our model thereby complicates the theory through the 

imposition of a second order nonstationarity. [For a 

variety of practical reasons, we desire to operate on 

y2(t) in order to ensure complete staticnarity.] 

An ad hoc technique for estimating D is to 

operate on y2(t) 
t0 remove (or adjust) the tlire scale 

change ß. The result, referred to as x2(t), may then 

be used with x-(t) in the usual ML estimator of Chapter 

3. This Indeed trras out to be the ML estimator for this 

problem (as is subsequently shown).  A major problem, 

of course, is that B as we?1 as delay D must be estimated 

to undo the time scaling introduced by motion of the 

source.  Suppose ß ,   for example, is one estimate (or 
EL 

hypothesis) of ß (like T was a hypothesized delay in 

Chapter 3) and let 

x2(t) ä y2(t/ßa) (5-21 a) 
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= ots(ßt/ßa+D)+n2(t/ßa)   . (5~21b) 

Now the crosscorrelation of x-(t)  with x0(t)   is given  by 

(5-22a) Rx1x2^trt2)   = Elx^t^XgC^)] 

a 
(5-22b) 

Thus, for ß =ß. we see that x.,(t) and x9(t) are second 

order jointly stationary, for then R   (t1 ,t9) depends 
xlx2 

oi 'y on the time difference i=t1-t0.  For 8 = 3, it is 

possible to compute a single Fourier transformation on 

^ T to achieve 

Gv  x   (f> = /  R*  x   (Oe~j2TTfTdT 
12 -» xl   2 

(5-23a) 

-*...(,>.-"*»  . (5-23b) 

Similar results can be obtained using the concept of 

locally stationary random processes (Silverman (1957)). 

However, in general, when ßfß , a two-dimensional 

Fourier transformation must be performed.  For convenience 

let ß-ß/ß  (where we ultimately hope to make 3=1 by 
a 

proper choice of ß ); then it follows that 

Xl(k)X*(l)l» -V dV dt2Rss(tr~ßt2-D) 
L J   T o   o 

(5-24a) 

e-ju>o(kt1-lt2) 

In the following it may be assumed that ß =1 
and S = ß ; that is, that \'2(t) has not been preprocessed 
Results can then be applied with ß = l (rather than 3=1); 
for many problems ß=l. 
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i 1 

Equation (5-24) offers a more rigorous interpretation of 

(5-23).  For large T and 0 near unity, it follows from 

(5-24f) (since the discrepancy between the sine functions 

is minor) that 

Gx x (f) = T EtXidOXgd)] 

aGoe(ko)A)e-
jku)AD , l-kji ss 

Also 

, l^kB . 

T E[Xl(k)Xl(l)]« ]Gnini(ka»A)+Ggs(ku)A),l=k 

,l#k 

(5-25a) 

(5-25b) 

(5-25c) 

and 
ku>. 

TE[X2(k)x;(l)}.[0aGn2n2(0aku)A)^Gss(-1A).l«k 

, lfk 
(5-25d) 

Note in (5-25d) G„ „  is evaluated at 6 kw. not kw.. non2 a A      A 

Similarly, it can be shown for 0*1 and large T, that 

■ *, EiX2(k)Xj(l)] aGgs(ko3A)eJka)AD    l-k/S 

(5-26) 
0 l^k/0 . 

We now proceed as in Chapter 3, Section A.  In particular, 

we desire to maximize a total award function J,, as 

depicted in Figure 5-3, through the adjustment of 

hypothesized compression 0 and hypothesized delay x; 

when J. is maximized, the ML estimates 0 and D depicted 

in Figure 5-3 are achieved. 

It is important to the discussion that follows to 

note that if 0 is incorrectly selected such that 0 is 

••-"• ~ 
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much different from unity, the processes x.(t) and x9(t) 

are second order jointly nonstationary and the estimators 

are not ML estimators.  However, once we have begun to 

estimate delay and compression correctly, the processor 

is an ML estimator; that is, in the sequential estimation 

problem where several observation intervals are available, 

then ML or at least AML estimation is possible in the last 

intervals.  Before proceeding, we also note that if 

ß^l any crosscorrelation (coherence) terms in the award 

J. will be zero.  More specifically, if ß is much 

different from unity, then time delay cannot be estimated 

without some type of Doppler or time compression 

preprocessing. The importance of this statement is that 

Chapter 3 cannot be applied to estimate bearing to moving 

sources which are nearfield (relative to the sensor 

separation) unless time compression preprocessing is done. 

Denote the Fourier coefficients of x1(t) and x2(t) as in 

Chapter 3.  The 2N+1 vectors X(k)=[xt(k),x2(ßk)]',k= -N, 

-N+1.....N for 6=1, are uncorrelated Gaussian (hence, 

independent) random variables.  More explicitly, because 

of the independence, the pdf for 

F{X1(-N),X2(-Nß)}' ,{X1(-N+l),X2[(-N+l)ß] }', ...fx1(N), 

X2(N6)}' 

given the true values of attenuation a, delay D and time 

compression ß (actually we also are given ß * hence are 

"given" ß=ß/ß  ) is the product of the individual 
a 

densities. 

■"^MMBISl 
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Specifically when ß =1 and ß*l the pdf of \  is 

N 1 
p(X|a,B,D) = n [h.exp(- ~J, )] 

k=-N K     *  K 

where 

J, 

and 

T[xJ(k)x*(k)]Qx
_1 (kuA) 

-1 

xx(k) 

x2(k) 

(5-27a) 

(5-27b) 

hk =[(2ff)|Qx(kü)A)n , (5-27c) 

and Q (f) is the power spectral density matrix between 

the random processes x-(t) and x„(t). 

For ML estimation, it is desired to simultaneously 

choose as 6 and ß those values which maximize the pdf 

evaluated for hypothesized compression ß and hypothesized 
ct 

A A 

delay T. Equivalently, ß and D are selected to maximize 

any monotonically increasing transformation of the pdf. 

Hence, ß and D are selected to maximize the log pdf, 

namely, 

N N 

J. = In p(X|a,ß,D) Elnh.- \       ^J k 2   ^ "k 
k=-N       k=--N 

(5-28) 

While the derivation provides sufficient information on 

estimating the parameters ß and D, it is valuable to 

interpret (5-28) in order to understand both its meaning 

and its implementation. The award to be maximized (5-28) 

can be written (assuming large T) as three terms 

substituting (5-14) and (3-15) 
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G      G 
X1X1_ + 

X2X2 

X1X1   "X2X2 

» x-x„ C, 1    df+; J3-2. -12_€+J2irfT 

df . (5-29) 
i * 

;     I 
1 Unlike Chapter 3, CL« depends on B. Equation '5-29) 

is difficult to interpret; it is comprised of three terms. 
i 

For ML estimation (versus AML estimation), only the last 

two terms of (5-29) depend on the data. However, the 

parameters ß and D appear in all three terms of (5-29); 

hence, all three terms must be considered. The first 

term of (5-29) is small with respect to the second term 

(because, from (5-14), the information has a logarithm 

in it); also, the first term of (5-29) is small with 

respect to the third term. Hence, we might expect that 

the first term can be ignored. However, under some 

common degenerate cases (specifically, t=D and T very 

large) the sum of the second and third terms does not 

depend on the parameters B and D. For example, for T=D and 

very large T, 6   -Gv x , i«l,2and Ö   -|Gv  |e-J
2lrfD 

i i  i i 12   12 

and the sum of the last two terms of (5-29) becomes 
00 1 _p 

-/ j Xdf, which is a constant. This situation Is 
_eo 1—U 

perplexing since the remaining term in (5-29) (namely, 

the information (5-14)) does not depend on the data, but 

only on the (assumed known) statistics of the data.  It 

is interesting that when this is the case and when we 

apply AML techniques (that is, we use estimated data 

statistics for assumed known statistics), the data do 

———^ rmTTnpinM witp—j» 
""' 11     1 
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appear ii the expression for the information. 

Finally, we notice if as a suboptimum technique, 

we were to take the first or last term in (5-29) and 

simply maximize it, that to do so would require adjusting 

the parameter estimates so as to attempt to increase the 

coherence across the entire frequency band; the second 

term of (5-29) does just the opposite. Notice when the 

time compression is estimated incorrectly, C12=0 and 

only the information I12 (or I12) is needed to estimate 

compression.  Having estimated compression correctly, 

only the last term of (5-29) is needed to estimate delay. 

This suggests a suboptimum ad hoc technique for estimating 

8 and D, namely, maximize the information to estimate 
At 

ß then use that $ to estimate D with the award function 

of Chapter 3.  In practice, this suboptimum technique 

should compare favorably with maximizing (5-29), since 

there are a number of assumptions and approximations 

leading to the award function (5-29); most notably, 

(5-29) presumes ßsl so that joint second order stationarity 

holds. When this is not the case, maximizing (5-29) 

becomes simply an advisable but ad hoc estimation 

procedure. 

There are some degenerate cases of the model 

(5-18) that are easier to work with analytically (namely, 

D known and equal to zero, n«(t)=0 and a=l).  Such models 

have rather predictable results (namely, the cross- 

correlation terms are important except as G   (f)-<*>, 
nlnl 

»'■     -1L —»—a MMB» 
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that is, as one of the observation channels becomes 

noise dominated; in the later case, the hypothesized 

time compression attempts to align the estimated auto 

spectrum with the (known) signal spectrum). Thus, the 

degenerate cases do not add insight into the fundamental 

issue of stationarity.  We are thus led to state that 

maximizing (5-29) (or first (5-14) and then the last 

term of (5-29)) by choice of B and fi (respectively) is 

merely an intuitively appealing ad hoc technique. 

5C.  Multiple Sensor Models 

The problem we address here is estimation of a 

parameter vector D from a set of sensors with received 

voltages 

xi(t) = ais(t+D.)+n1(t)  i=l,2... . (5-30) 

Although the notation for D, is the same as Section A, 

this model should not be confused with a multiple 

source model, since this model is only one source but 

many sensors. To extend the problem to many moving 

sources received at many sensors requires that 

xi(t) " \l  ai,ksfi,kt+Di,k]}+ni(t)   .       <5-31) 

In the model (5-30), we assume (without loss of 

generality) that a«"l and D-^O; thus 

xx(t) = s(t)+nx(t) (5-32) 

x2(t) = a2s(t+D2)+n2(t) 

xM(t) = aMs(t+DM)+nM(t) 

, '  *- • ;'■  ilf Tl«M«t ■»■ I 
ggn^^mi^^^ 
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and we desire to estimate the M-l dimension relative 

delay vector (D^-D-, Dg-D-,...,D„-D1). 

The general solution to this problem is simply 

an extension of the alternate realization ir Chapter 3, 

Section 3C.  In particular, the steering vector is now 

V' » [1, ^2lTfD2,...<f-J2lTfDM] 

For uncorrelated noises 

Q - diagPG    ] <«n  uj.*Bi 
unin1 

J 

The lxM vector filter is given by 

-1. 

H =   [H- ,H„, . . . >Hj.J 
% S ss 

[1+Gssv/Qn"Vl 
* 

(5-33) 

(S-34) 

(5-35) 

Hence, the generalization is realized by extending 

Figure 3-10 to M prefilters with one at each sensor 

location as shown in Figure 5-4.  A more explicit 

realization is given in Figure 5-5, which is the extension 

of Figure 3-11. 

«■«■• MHMW 
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CHAPTER 6 

DISCUSSION 

6A. Applications and Summary 

The purpose of this section is to briefly 

summarize and discuss the applications of this work. 

Most of the applications are intimately tied to the 

theoretical results already presented which are summarized 

in the subsequent paragraphs. The primary purpose of this 

section is to highlight applications of the theory with 

a minimum of reliance on mathematical notation. There 

are three main applications for the theory of time delay 

estimation discussed in the following three subsections. 

First, it is a useful vehicle for parameter identification 

Second, we can use it to obtain bearing estimates. 

Finally, under certain conditions we can estimate source 

position. These applications rely on the theory 

developed in the preceding text, which is summarized in 

the following two paragraphs. 

This dissertation has investigated methodologies 

for passive estimation of the rearing to a slowly 

moving acoustically radiating source.  As demonstrated, 

the mathematics for the solution to this problem is 

analogous to estimating the time delay between two 

time series. Because the estimation of time delay is 

135 
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closely related to the coherence between two time 

series an extensive investigation of coherence has been 

presented.  New results on using coherence to provide 

information about linear and nonlinear systems have 

been presented and proved. 

The ML estimate of time delay (under jointly 

stationary Gaussian assumptions) has been derived. 

The explicit dependence of the time delay (s;imate ■" 

coherence is evident in the estimator realization if 

which the two time series are prefiltered (to accentuate 

frequency bands according to the s.trength of the 

coherence) and subsequently crosscorrelated. The 

hypothesized delay at which the GCC function peaks is ;~\\e 

time delay estimate.  From the GCC realization the 

variance of the time delay estimate has been obtained. 

By use of a different interpretation of the MI. estimn-r>r 

derivation, other realizations have been obtained.  The 

GCC realization with ML weighting is compared to several 

other proposed weightings.  The estimation formulation 

has been extended to three important generalizations: 

multiple sources, moving source and multiple sensors. 

Nonstationarities introduced as a result of source motion 

are studied.  These results can now be applied to three 

problem areas of interest. 

6A1.  Parameter Identification 

In the system identification problem we are given 

a system with unknown c.sscription.  We design a probe 

T"~" " ~ i  ■ i »~i g  
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to excite the system and ensure that the probe is 

sufficiently rich in frequency content (G (f)>0, 

fe(-B,B)). Then we simultaneously observe (perhaps 

recoir ) the probe (input) and response (output) of 

the system.  The objective of these observations is 

to characterize the system.  In Chapter 2 it has been 

shown that there exists a linear filter which will 

characterize the system if the MSC is unity at all 

frequencies.  (Appendix C provides a computer program 

for estimating MSC between two waveforms (input and 

output)) When the MSC is not unity, the characteriza- 

tion is considerably more complex. We have looked at 

certain no memory nonlinearities and shown how they can 

be characterized by orthogonal polynomial expansions. 

The main thrust of the dissertation, however, 

has been to estimate one parameter (delay) when the 

system is linear, but the observations are corrupted 

by noise.  Proper estimation of just this one parameter 

requires knowledge of the magnitude transfer function 

a   (or m^re generally lct(f)l), and finally knowledge 

of the noise spectral densities. When this a priori 

knowledge is not available., we have proposed estimating 

the unknown quantities and substituting them in place 

of the known quantities.  There is no rigorous 

derivation to support this procedure other than to note 

that as the observation time becomes large the estimated 

quantities converge to the true ones.  Thus, the 
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methodologies applied to the time delay estimations can 

be expected to be even more complex if, for example, 

the filter output were x2(t)=a1S(t+D1)+a2S(t+D2)+n2(t). 

More generally, if x2(t) was the output of an FIR 

digital filter of unknown order then the problem of 

estimating the order, the delays and the attenuations 

(see Ilannan and Thomson (1971), Hannan and Robinson 

(1973) and Carter and Knapp (1976a)) is a more general 

problem than the one addressed here.  However, to solve 

the bearing estimation problem motivating this research, 

the added generality is not required.  Thus, the problem 

considered here is only a subset of the parameter 

identification problem.  Further, note that the solution 

to the time delay estimation problem does not involve 

the Fourier transform of the optimum Wiener-Hopf filter 

(Roth processor)f which maps x..(t) closest to x2(t); 

that is, the technique does not look at **c peaks or 

midpoint of the impulse response of the filter that 

in the MMSE sense filters x-(t) to obtain an optimum 

Xg(t).  With these comments in mind, we have generalized 

our model to an Important class of nonstationarities 

in order to estimate bearing. 

6A2.  Bearing Estimation 

The bearing estimate follows directly from the 

delay estimate according to the simple arccos trans- 

formation (3-2).  The range does not need to be too 

great relative to the sensor separation in order for the 
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angle that the hyperbola asymptote makes with the 

baseline to accurately represent the source beaming. 

For stationary sources or closely spaced sensors, the 

relative Doppler (or more generally, the time 

compression) can be ignored.  However, to apply 

these techniques to widely separated sensors and 

moving sources, it is necessary to process the data 

in order to perform Doppler correction (that is, a 

time scale correction or time scale expansion).  To 

ignore this processing would result in an apparent 

uncorrelated behavior between the two received waveforms. 

One contribution of this work has been to specify an 

ML estimate of time compression.  However, because of 

the nonstationarity of the processes involved, the 

results tend to be more heuristic and more difficult 

to interpret (and implement) than those for the time 

delay estimation problem.  In fact, the implementation 

is hindered by practical computational issues of achievine 

the time compression. Nevertheless, in the future as 

computational methods allow for broadband time 

compression, the methods hypothesized heie could actually 

be tested in  practical environments. This should not 

be interpreted to mean that time compression cannot 

currently be accomplished. Exact time compression can 

be achieved, as for example, with variable speed tape 

recorders or with exact DFT's.  Approximate time 

compression can also be achieved through complex inter- 
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polation of FFT points or nearest FFT bin approaches. 

In practice, all of these techniques are expensive 

to implement; hence, any production application of the 

theory will benefit from advances in methodologies 

and mechanizations for achieving time compression. 

Having techniques for estimating the bearing to moving 

acoustic sources, we can extend the applications of our 

theory to estimating range. 

6A3. Passive Ranging 

In the two sensor models, we are able to estimate 

delay from which we can estimate bearing.  In the 

multiple sensor situation more information is available. 

Indeed, with three sensors we can also estimate source 

location.  For example, in Figure 6-1 three equispaced 

collinear sensors are depicted.  As indicated in 

section 5C, the estimate of 9-i.Qo re(luires simultaneously 

processing data from all three sensors (one suboptimum 

processor would be to estimate each bearing from 

generalized crosscorrelations between only two sensors). 

When the sensor-pair midpoints are separated by distance 

d (meters), the range (meters) to the source is given by 

dsinG« 
R = "sinOj-e^ • (6-1) 

An estimated range is obtained by inserting estimated 

way i H*»^"'^^****^*'; 
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SOURCE 
LOCATION 

Figure 6-1 Three Collinear Sensors, Single Source 
Passive Ranging Geometry 
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bearings in (6-1).  The asymptotes depicted in 

Figure 6-1 are upper bounds (biased estimates of 

hyperbolic LOP's); hence, the actual source location 

will be slightly "below" the intersection depicted. 

For R>>d, the bias will not be a practical concern. 

For more complicated sensor geometries (see 

Figure 6-2), the bearings GL and 0„ are used to obtain 

e     e effective bearings Q-  and 0„ .  When the sensor 

geometry is known, the effective bearings are easily 

obtained by the addition of a correction term to the 

observed bearing.  Similarly, the effective separation 

d is simply the shortest distance between the midpoints 

of the sensor pairs (1,2) and (2,3). The range estimate 

is then obtained by substituting effective measurements 

into (6-1). When four or more sensors are used to 

estimate three or more LOP's, source position may be 

ambiguously specified, as shown by points A, B, C in 

Figure 6-3.  In such a case, it is reasonable to presume 

that the source is the least squares distance from 

existing LOP's; although it is possible for two or 

three sources to be present. 

*The estimated position (range and bearing, in 
polar coordinates) obtained by substituting ML 
estimates of the bearings into (6-1) is not necessarily 
the ML estimate of position. 

WWHH! — *•** 
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Figure 6-3 Three Estimated LOPs to One Source 



145 

6B.  Suggestions for Future Work 

This section suggests four areas for future 

work.  In a sense, it provides an insight into what 

we still do not know about the problem at hand. Or 

stated differently, having solved the problem we set 

out to solve, we now understand how to nose new problems 

which we have uncovered.  First, in the parameter 

identification area there appear to be several fruitful 

research questions:  How to identify parameters for 

(1) general (or particular) nonlinear systems, (2) 

multi-input, multi-output linear systems, (3) general 

linear systems, and finally (4) "real world" socio- 

economic systems.  The complexity of estimating time 

delay suggests that the solution to these problems will 

be more complex. 

The second area is verification of the theory 

by simulation.  We have already conducted one costly 

computer experiment (Appendix D) which substantiates 

our belief that insertion of estimated spectra for 

true spectra enhances the estimation of time delay. 

However, without running many such experiments, we have 

no statistical argument to substantiate the theory. 

Because the cost of running this analysis is prohibitive 

on a large scale, digital computer, special purpose 

FFT hardware should be used to empirically validate the 

theory. The cost of such a system will be significant. 

9SBP> 
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The third area of investigation is an extension 

of the theory to sequential estimation.  In practice, 

our observation interval will not be just T seconds; 

rather there will be several consecutive periods of 

T seconds.  Knowing that the source is constrained in 

its rate of speed, we should be able to rule out- 

certain ambiguous estimates of delay (bearing).  More 

generally, we could model the ship's track and use 

Kaiman filter techniques to extrapolate best projected 

position (bearing) based on the filter outputs. 

Finally, the theory presumes a great deal about 

(1) ocean acting as a linear time invariant filter over 

the observation period T, (2) the characteristics of the 

noise, and (3) the source motion.  Thus, the true 

engineering test is to make controlled measurements with 

actual acoustic sources in the ocean in order to test 

the hypothesis.  Based on what we currently know, there 

is every reason to believe such an endeavor will be 

successful. 

^^IW^MMBMB—ilMW^—SWU«       ■■ "8 



APPENDIX A 

TECHNIQUES FOR SPECTRAL ESTIMATION 

The basic objective of this appendix is to 

briefly describe two (similar) techniques used to 

estimate the elements of the power spectral density 

matrix. The estimates obtained are then used to form 

an AML estimate of time delay. The two techniques are 

the overlapped FFT technique (discussed by Carter, 

Knapp, and Nuttall (1973a)) and the Chirp-Z transform 

(CZT) technique (discussed by Carter and Knapp (1975)). 

The methods discussed are sometimes referred to as 

direct methods (as opposed to indirect correlation 

methods) and have been discussed in part by Knapp (1966), 

Welch (1967), Bingham, Godfrey and Tukey (1967), Benignus 

(1969a), Nuttall (1971), Williams (1971), and Rabiner and 

Rader (1972). 

Both methods begin with two (one from each process) 

digital waveforms (or with analog waveforms that have 

been lowpass filtered and digitized).  Briefly, there 

are four steps in the estimation procedure:  First, each 

time series is segmented into N segments, each having 

P-data points.  Second, each segment is multiplied by 

a smooth weighting function. Third, the Z transform of 

the weighted P-point sequence is evaluated on the unit 

147 
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circle in the Z-plane.  Finally, the Fourier roefficient.s 

thus obtained are used to estimate the elements of the 

power spectral density matrix by averaging "raw" power 

spectral estimates over all the N segments. The two 

methods of spectral estimation differ in how the Z transform 

is evaluated.  One method uses the FFT; the other uses the 

Partitioned and Modified CZT (PAM-CZT). 

More explicitly, two random processes that are 

jointly stationary over N data segments are processed 

as follows (Carter and Krapp (1975)): 

1. Each of the two time series is segmented 

into N segments of P points. The segments may either 

be disjoint or overlapped. Then one segment of P data 

points with the same time origin is selected from each 

of two time records. Even if each of the N data segments 

is large (for example, greater than 4096), P should be 

selected to ensure that the sampling frequency divided 

by P will afford adequate spectral resolution. 

2. Each of the two P point segments is 

multiplied by a smooth weighting function  Here smooth 

means that the £-th order derivative is continuous over 

the full interval of data points, for £=0, 1, 2, ... up 

to some reasonable limit. The smoother the weighting 

function, the more rapidly the side lobes of Its Fourier 

transform, or window function, will decay. The more 

impulse-like the window, the less leakage there will be 

of extraneous power, which corrupts spectral measurements. 
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Hence, good weighting functions result in better spectral 

estimates.  The price paid for impulse-like window 

functions with rapidly decaying side lobes is a wider 

main lobe, that is, poorer frequency resolution when 

P is held fixed.  Tf better resolution is desired, more 

data points per segment will be required.  This in turn 

requires both that the data be available and that tney can 

be eiricitui11 y processed.  Moreover froT ? s*"?-^1!!!^*^ 

point of view, increasing P decreases the available 

number of independent data segments when the data duration 

is finite. 

The specific selection of a weighting function 

involves a number of tradeoffs. A commonly used weighting 

(or windowing) function is the cosine (Hanning) function 

defined at the p-th instant in the interval (0,P) ay 

i(i-«»ip)i 
such a function starts out at zero for p=0 smoothly rises 

to unity by p»P/2 and smoothly decays to zero at p=P. 

The application of a cosine-weighting function, 

which is necessary to reduce errors due to side lobe 

leakage, has the disadvantage of apparently wasting the 

vailable i%ta. This apparent wastage can be overcome 

through overlapped processing.  In particular, Nuttal! 

(1971) has shown that the same stability (as measured by 

the number of equivalent degrees of freedom) can be 

obtained from a fixed amount of data via overlapped 

MHIB"» 
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processing as with Rlackman and Tukey (1958) correlation 

processing for both auto and cross spectral density 

estimation.  (Results on cross spectra processing 

followed in a supplemental report.) 

Quite naturally, there is an increase in 

computational cost associated with overlapped processing. 

Specifically, the number of FFTs to be performed (a 

measure of the computational cost) increases with the 

percent overlap specified.  For example, the number of 

FFTs required for 50-percent overlap is approximately 

twice the number for 0-percent overlap.  Increasing the 

overlap from 50-percent to 62.5 percent requires 

32-percent more FFTs.  For Hanning weighting, the 

improvement to be derived from using 62.5-percent overlap, 

as opposed to 50-percent overlap, will not usually 

warrant the increased computational costs (Carter, Knapp, 

and Nuttall (1973a)). 

Note that if there is no overlap, each segment 

would be virtually independent of the previous one 

(except for correlated edge effects).  Independent data 

segments facilitate certain analytic computations.  Hence, 

all theoretical results here are concerned with the case 

of independent segments; that is, no overlap. This is 

true even though overlapped processing is recommended 

for actual data processing.  The amount of overlap 

desirable can be predicted by picturing the apparent 

wastage for a specific weighting. 

_______ 
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3. The transform of the weighted P-point 

sequence is evaluated on the unit circle in th^ z plane. 

The two sided Z-transform of an infinite sequence is 

defined by Gold and Rader (1969) and Oppenheim and 

Schäfer (1975) as 

00 

Xn(z)  = £ xn(p)z~
p, n=l,2,...,N , (A-l) 

p=—00 

where z equals any complex variable. 

Similarly, Y (z) is defined as the Z-transform 

of y„(p)-  When x (p), yn(P) are finite in duration, the 

infinite series (A-l) becomes finite. Evaluation of the 

Z-transform at P equally spaced points around the circle 

yields the DFT: 

X„(k)=  E x (p,e-J2*Pk/P  . (A-2) 
n n 

p=0 

Similarly, Y (k) is the DFT of the n-th weighted data 

segment y_(p), p=0,l,...,P-1. The DFT can rapidly be 

evaluated by two methods: the Cooley-Tukey (1965) or the 

PAM-CZT (see, for example, Rabiner, Schäfer, and Rader 

(1969), Schilling (1972), Ferrie, Nawrocki, and Carter 

(1973), and Carter and Knapp (1975)). The FFT is a fast 

algorithm for evaluating the DFT.  If the DFT, (A-2), 

is evaluated for P frequencies (k=0,l,...,P-1) it requires 
2 

P (complex) multiplications and additions (MADs).  The 

FFT uses an ingenious computation method to evaluate 

(A-2) in just PloggP MADs. Thus, for P=4096, the number 

of MADs is reduced by a factor of more than 340.  Thus, 

iffiim  Ml — :-■  .. '■■ 
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computations requiring more than 5 hours can bo done 

in less than 1 minute using FFTs in lieu of DFTs. 

Specific details of the FFT are beyond the scope of 

this dissertation. 

The DFT, (A-2), is a special case of the CZT, which 

was introduced by Rabiner, Schäfer, and Rader (1969) 

and amplified, including software implementation, by 

Schilling (1972) and hardware development by Alsup, 

Means, and Whitehouse (1973), and Buss, Collins, Bailey 

and Reeves (1973).  Given sufficient data, it is a fast 

and efficient technique for computing the Z-transform of 

a sequence on any Z-plane spiral.  The modified CZT 

(MCZT) evaluates equispaced frequency points on the 

unit circle in the Z-plane.  With proper spacing and 

starting points, it is equivalent to the DFT. 

Computationally, the MCZT requires three FFTs each of 

size greater than N (for example, 2N)to compute the 

DFT, (A-2).   However, the tradeoffs are really more 

complex than this.  (For example, if many MCZTs are 

to be performed one of the three required FFTs does not 

need to be repeated after its first computation since 

it is a transformed cosine data table.) The major 

advantage of the MCZT occurs when the number of data 

points P (in each of the N data segments) is large. 

This work was brought to the author's attention 
by Dr. N. Ahmed, Kansas State University, Manhattan. 
Kansas. 
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In such cases, the original P point data segment can be 

again segmented into R partitions each disjoint with 

size P/R data points.  The R partitions are processed 

with R MCZTs; the outputs are summed together with 

appropriate phasing to achieve a PAM-CZT that is 

equivalent to the DFT, (A-2;.  The mathematical details 

of this technique are covered in length by Ferrie, 

Nawrocki, and Carter (1975); their inclusion here does 

not appreciably add to the discussion but does considerably 

complicate the notation due to conflicts with assigned 

symbols.  For most broad band cases of interest (and 

certainly the example case in Appendix D), the rFT will be 

preferable to the PAM-CZT.  A complete discussion of the 

tradeoffs is given by Carter and Knapp (1975). 

Having computed the DFT, (A-2) , either by an 

FFT or PAM-CZT, we are ready to proceed with the fourth 

step in the spectral estimation algorithm. 

4.  The spectral estimates are 

G (k) xxv ' 

G (k) = 
yy 

G (k) = xyv 

N 

cg £ |xn(k)|2, 
n=l 

N       2 
c    y |Y (k)j   • 

n-1 

N 
c y X (k)Y*(k) g Lt    n   n  ' 

n=l 

(A-3a) 

(A-3b) 

(A-3c) 

where the constant 
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Cg = N.f -P    ' (A_3d) &       s 

and f = sampling frequency. (The estimated cross spectrum s 

(A-3c) is complex.) The estimate of MSC 

|Gxv(k)|
2 

Cxv(k) = - Xy    . (A-4) 
y      G (k)G (k) xx ' yyv ' 

The AML estimation of time delay requires substituting 

the estimates C  in place of the true (but unknown) 

value of MSC.  Therefore, we are concerned about the 

statistical variability of the MSC.  Further, the 

statistical characteristics of C are of interest in their 

own right, since C is useful not only in time estimation 

(Chapter 3) but also for other applications (Chapter 2). 

Appendix B discusses the statistics of the MSC estimate. 

-"--"*"*— 



APPENDIX B 

STATISTICS OF THE MSC ESTIMATE 

The MSC estimate, from (A-3) through (A-4), is 

C (k) = xyv 
XXn(kK^  2 (B-l) 

L      n 
n=l' 

2 ; Y oo 2 

n=l 

where N is the number of data segments employed and 

X (k), Y (k) are the DFTs of the n-th weighted data 

segments of x(t), y(t), respectively.  Under certain 

assumptions the statistical characteristics of C can 

be evaluated.  This appendix is divided into four 

sections.  The first section gives the pdf, cumulative 

distribution function (<idf), and m-th moment of C, given 

C and N.  The second section gives the bias of the 

estimate C including a discussion of when the analytic 

results fail and simulations to support the theory. 

The third section gives the variance of C.  The fourth 

section gives a computer program for evaluating receiver 

operating characteristics (ROC) of a linearly 

thresholded coherence estimation processor.  The 

results in all four sections are based on the derivation 

by Goodman (1957) of an analytical expression for the 

pdf of the MC estimate and the subsequent extensions to 

155 
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MSC by Carter, Knapp, and Nuttall (1973a).  These 

results are based on two zero-mean stochastic processes 

that were jointly stationary, Gaussian, and had been 

segmented into N independent segments-  Each segment 

was assumed large enough to ensure adequate spectral 

resolution. Further, each segment was assumed perfectly 

weighted (windowed), in the sense that the Fourier 

coefficient at some k-th frequency was to have "leaked" 

no power from other binsv The statistics do not hold 

at the zero-th or folding frequencies (Hannan (1970)). 

Extensions to Goodman's work are given by Alexander and 

Vok (1963), Amos and Koopmans (1963), Enochson and 

Goodman (1965), Nettheim (1966), Wahba (1966), Tick 

(1967), Carter and Nuttall (1972), Carter, Knapp and 

Nuttall (1973b), Halvorsen and Bendat (1975)}and Nuttall 

and Carter (1976a). 

Bl.  Probability Density, Cumulative Distribution 
and m-th Moment of C 

The first-order pdf, cdf and m-th moment of the 

estimate of MSC, given the true vralue of MSC and the 

number, N, of independent segments processed, are presented 

in this section in closed form. 

Despite the fact that it is only mathematically 
tractable to obtain analytic expressions when the segments 
are independent, we would in practice use sc.-e overlapped 
processing to regain the apparent data wastage inurred 
by the necessity of data weighting.  Carter, Knapp, and 
Nuttall (1973a) report the results of an empirical study 
that demonstrates how bias and variance decrease as a 
function of increased data segment overlap.  Fifty percent 
overlap is recommended with cosine weighting. 

n&fdMk. g 
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The conditional pdf for C, between two processes, 

given C and N, is (Carter, Knapp, and Nuttall (1973a)) 

p(C|N,C) = (N-l)(l-C)w(l-Cr Z (1-CCT ^F^l-N.l-NjljCC). 

(B-2) 

The 2Fi is a hypergeometric function with two numerator 

terms and one denominator term.  (It is a sDecial case of 

(B-7) and is discussed more fully in Section B4.)  For 

present, we note equation (B-2) is desirable because 

0F-(1-N,1-N;1;CC) can be expressed as an (N-l)st order 

polynomial (Abramowitz and Stegun (1964), Equation (15.5.1)) 

A special case of the density function occurs when 

C=0.  In that event, 

(B-3) 

Using a result of Fisher (1950), Carter, Knapp, and 

Nuttall (1973a) have determined (in closed form) the 

cumulative distribution of the estimate of MSC, namely, 

p(C|N,C«0) = (N-1)(1-C)N"2 

P(C|N,C)=C te)N ;r0(iä)k ■ M—^) (B-4) 

A digital computer program to evaluate equation (B-4) 

is given in Section B4.  In the special case when 

C=0, the cdf can be simplified to give 

P(C|N,C-0) = 1-(1-C)N~1  . (B-5) 

Equation (B-5), when differentiated, yields the pdf 

equation (B-2). 

The m-th moment of the MSC estimate can be found by 

application of Equation 7.512(12) by Gradshteyn (1965) to 

■ .jy.^fcjfe^.. 
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a different form of (B-l) to yield (Carter, Knapp, and 

Nuttall (1973a)) 

E[(Cm|N,C)]= d-C)N r(N?(^;1} 

3F2(in+l, N, N; m+N, 1;C) (B-6) 

These results can be confirmed using Carter (1972a) and 

Anderson (1958). 

The „F2 hypergeometi-ic functions (with three 

numerator terms and two denominator terms) are given by 

/  / a     VN r, •      An-      rr\     -     V  fi 5 I»   

00 (a) (b) (c)  Z 
F2(a,b,c; d.e; z) -^ -jjylj^ -p •   (B"7a) 

where the (a), notation is Pochhammer's symbol (Abramowitz 

and Stegun (1964)) defined by 

(tL\    £ ^(a+k)  , 
u;k   r(a) (B-7b) 

where T( ) is the Gamma function.  Similarly, the F two- 

one function has two numerator and one denominator terms. 

B2.  Bias of C 

This section deals with the bias of the MSC estimate. 

Exact and approximate expressions are presented.  In 

addition, computer evaluation of the exact expressions 

is presented to lend meaning to these results, and two 

computer simulations are presented.  The first simulation 

demonstrates the need to have adequate spectral resolution 

The second simulation verifies the theoretical results 

for bias (and also variance, which is discussed in the 

next section, B3). 

MM^ii MMte^MB^M Hf"!"""""""•""■"!'"■■■■■"■"«■"■• 
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Consider now the first moment of the estimate of 

MSC which can be written as 

E[C|N,C] = ö~)  3F2(2,N,N;N+lll;C)  , (B-8) 

which can be manipulated into the form (Carter (1972a)) 

E(C|N,C) = | + ~  C ^(1,1^+210) . (B-9) 

The bias or expected estimation error is defined 

as 

Bias = B(C|N,C) - E(C|N,C) - C  . 

An exact expression for the bias is 

N-l 1 
N B(C|N,C) = ^ + §+I C 2F1(1,1;N+2;C)-C . 

(B-10) 

(B-ll) 

The maximum bias is 1/N (regardless of N and C). The 

bias is plotted in Figure B-l.  It should be noted that 

lim (Bias) « 0 ; (B-12) 

therefore, the estimator may be referred to as asymptotically 

unbiased. By expanding 2F1 in (B-ll) in a power series 

-2 in C and retaining terms to order N , the following 

approximation is obtained (Nuttall and Carter (1976b)): 

,2, B1(C,N) = §(1 - C) f f) (B-13) 

Plots of N B(C,N) and N B1(C,N) are presented in Figure 

B-2 for N=4 (they cross near C=0.4).  Approximation 

(B-13) is seen to be excellent over the entire range of 

C.  Furthermore, the discrepancy between the approximation 

(B-13) and the true bias (B-ll) is even less for larger 

 -a-s^-^^ rifc 
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NB1(C,N)=(l-C)
/(l+-]q-) 

NB(C,N) 

Figure B-2 Bias of C and Approximations for N=4 

__ 
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values of N. 

For large N, (B-13) is further reduced to the 

approximation given by Carter, Knapp, and Nuttall (1973a): 

B2(C,N) = i(l-C)2; good for large N .       (B-14) 

Therefore, as N leads to infinity, N B(C,N) tends to 

2 
(1-C) , which is also plotted in Figure B-2; furthermore, 

the approach is monotonic. 

In Benignus (1969a), (2), an approximate expression 

for the bias, based upon a simulation approach, is 

presented as 

Bg(C.N) = jjj(l-C)  . (B-15) 

Whereas the results in Haubrich (1965) and (B-14) dictate 

a quadratic behavior for bias, the approximation by 

(B-15) indicates a linear behavior.  Since (B-ll) through 

(B-14) is based upon theory and (B-15) is based upon 

simulation, it was decided to verify (or invalidate) 

(B-ll) through (B-14) by a simulation approach.  Two 

computer simulations were conducted. 

In order to verify the theory, the simulation must 

preserve those assumptions present in the derivation 

of the theoretical expression (B-ll) for bias.  Specifically, 

as pointed out by Carter and Knapp (1975), (B-ll) holds 

under the following assumptions: 

1. jointly Gaussian stationary processes 

2. N independent (non overlapped) data segments 

^.^^-: 
mm 
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3. smooth weighting function to reduce side 

lobe leakage 

4. adequate frequency resolution 

When any of the specified assumptions are violated, 

analytic results derived for bias (and variance) of 

the estimator can be grossly misleading.  (The Gaussian 

part of the first assumption is weak; see the discussion 

after (3-3).) As an empirical verification of this 

statement, consider the study reported by Carter and 

Knapp (1975), where C (f) = l.Vf.  Specifically, consider 
xy 

a simple linear second-order digital filter of the form 

Y = 1.97300Y . - 0.9S202Y 0 + 0.00872X •  (B-16) 
n n-i n-<ä n 

The system behavior was studied by probing the filter 

with a white pseudorandom noise source. The sampling 

rate was set equal to 2048 Hz; hence, the Nyquist rate 

of IT radians is depicted as 1024 Hz in the figures that 

follow. 

The filter phase characteristics were estimated, 

Figure B-3, with P=1024, cosine weighting, and 64 

independent segments.  Despite the fact that the MSC 

between input and output should equal unity (hence, the 

bias of the estimator would normally be zero), the 

estimate of MSC is grossly biased when a rectangular 

weighting function is used.  Specific MSC estimates are 

depicted in Figure B-4 for the rectangular weighting 

case. The bias attributable to improper windowing, while 

^^^^r^^^^^^^^^^^^"^^^^^^*™ 
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severe, can be substantially eliminated through 

selection of a leakage-suppressing window. When a 

cosine or Hanning window is utilized and the data are 

reprocessed, estimates depicted in Figure B-5 are 

obtained. Notice now that the bias, though greatly 

improved, still exists in the vicinity of 30 Hz. 

Referring to Figure B-3, notice that 30 Kz is the center 

of a frequency band in which the first derivative of the 

phase is large. The dependence of the bias of the MSC 

estimate on this characteristic of phase is predicted in 

Jenkins and Watts (1968), Hannan (1970), and Koopmans 

(1974). 

Once sufficient resolution has been achieved, this 

bias no longer exists.  To determine whether the bias 

in Figure B-5 could be reduced by more averaging, as 

analytically predicted by the approximation in Jenkins 

and Watts (1968), additional independent data segments 

were processed in the simulation (that is, N was made 

larger without changing P).  In this case of insufficient 

resolution, the maximum bias error was observed to be 

independent of the number of segments averaged; that is, 

the estimator is biased as N-*-°° when the number of data 

points per segment is small. 

When large amounts of data are used, as in the case 

of a computer simulation, better resolution can be 

obtained without loss of averaging (variance reduction) 

capability.  However, when the data are of limited 
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duration then--dependent on the length of actual data 

cuts and the stationarity of events over that duration— 

another method can be employed to improve MSC estimation 

in the face of rapidly changing phase angles. These 

methods an1 referred to a.s alignment, or translation 

methods, and are used to remove the time delay or group 

delay of a filter.  Translation (that is, prefiltering 

by a single time delay) of one time series with respect 

to another permits the rate of change of the phase in a 

particular frequency band to be controlled and reduced 

to yield better MSC estimates in that frequency band. 

The implication is that MSC estimates are valid in 

frequency bands where the phase has little or no slope. 

Various methods for estimating the time delays are 

discussed in Chapter 4. 

Translation was applied to align the time series 

for the example presented here.  After alignment, 

unbiased estimates were obtained in a 20 Hz band about 

30 Hz; however, as expected, outside that band, biases 

were severe, making interpretation meaningless.  In 

general, translation must be applied for "all" time 

delays and the results combined into one result (graph); 

hence, when sufficient data are available, the author's 

preference is for finer frequency resolution rather than 

for the piecemeal approach which may be dictated for 

reasons of limited data or limited stationarity.  In the 

latter case (of P sufficiently large), C will not depend on D. 
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The example used here exhibited biases of one 

tenth (see Figure B-5); furthermore the trend was 

clearly indicative of the fact that any bias (less 

than one) could be expected with insufficient frequency 

resolution even when as many as 64 independent data 

segments have been processed  (Carter (1972b)).  The 

practical implication of this limitation is that it is 

highly desirable that the actual number of data points 

per segment, P, be large.  For a finite duration data 

set, this will mean increased instability in the 

estimator (that is, smaller N and hence larger variance). 

It should be noted that one cannot simply increase P 

by adding zeros or by increasing the sampling rate 

of the original data, for then no additional information 

content is added.  Quite the contrary, the minimum data 

sampling rate should be selected, for this ensures 

the maximum amount of actual time per data segment for 

a given value of P.  Good resolution, that is, large 

P, apparently requires computation of a large size FFT. 

An alternative computation that reduces the required 

FFT size is the PAM-CZT (Appendix A). 

The results of the first simulation show two critical 

things:  first, when estimating MSC (or any spectral 

quantities) it is important to use both smooth weighting 

functions and adequate frequency resolution.  Second, 

simulation experiments to validate expressions for bias 

of C can give misleading results due to the sensitivity 
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of the four fundamental assumptions upon which the theory 

rests.  Another difficulty in experimentally estimating 

bias is that when the assumptions do hold, the bias is 

a small quantity to measure.  For example, for - 

C=0.3, N=32, we find B(C,N)=0.0156.  However, the 

standard deviation of C is approximately 0.3.  (See 

Section 3 of Appendix B.) Thus a large number of 

independent trials, in each of which C is computed, 

must be used in order to obtain a sample mean that has 

statistical significance.  We use 10,000 different 

independent trials at each value of 00 (.1).9; the 

results of Benignus (1969a) employed less than 1,000 

trials. 

Lastly, the smallness of the bias dictates that the 

desired value of C be accurately realized in the simulation, 

As an example of the danger of not doing so, consider 

the following:  suppose we believe we have generated 

processes with a desired coherence of 0.300, aid 

subsequently observe a sample mean of 0.315; in such a 

situation, the estimated bias is 0.015.  But if the 

generated coherence is not precisely under the 

experimenter's control and is off by only 1 percent 

(giving rise to a true coherence in this example of 

0.303),  then the bias should have been reported as 

0.315-0.303-0.012.  Thus, a 1 percent error in true 

coherence gives rise to a 25 percent error in estimated 

bias in this example.  We generate our correlated 
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processes according to 

x(t) « a(t) , (ß-17a> 

y(t) = b(t) + ga(t), (B-17b) 

where a(t) and b(t) are uncorrelated complex Gaussian 

processes, and 

g - f£c     ■ <B-18> 
The statistical characteristics of C in (B-l) are 

derived on the fact that X(k) and Y(k) are Gaussian. 

This will be the case if x(t) and y(t) are Gaussian; 

however, the essence of the theory does not require 

X(k) and Y(k) to be DFT outputs but merely complex 

Gaussian random variables.  Thus, we can simply avoid 

the issues of weighting and frequency resolution by 

simulating the DFT outputs directly; this technique 

reduces the cost of the experiment (and indeed will 

verify the theory).  The essential features of the 

simulation are given in Figure B-6. 

The results of the simulation for N=4 are superposed 

in Figure B-7 on the exact bias curve. 

In particular, the sample mean of 10,000 independent 

trials at each value of C=0(.l..9 is plotted, along with 

a vertical bar between the +o points of the random 

variable.  In seven out of the ten cases of selected 

MSC, the +o points bracket the theoretical curve, and 

the remaining three out of ten are included within the 

+2o points.  The possibility of (B-15) falling within 
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of Bias of C; N=4; 10,000 Trials 
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Figure B-7 Theoretical and Simulation Results for 
Bias of C; N=4; 10,000 Trials 
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these tolerances is completely ruled out. Thus, the 

simulation confirms the theoretical result in (B-ll) 

and rules out the approximation in (B-15). 

Since we have a simulation technique which corroborates 

the theory so well, it is possible to employ it to 

investigate other more complicated functions of C 

which are very difficult (if not impossible) analytically. 

In particular, we use a bootstrap idea based upon that 

of Benignus (1969a) in an attempt to reduce the bias 

of the coherence estimate. Namely, we consider a 

modified estimate of MSC as 

max o,c - j|(i-c)2 /i+ ^J (B-19) 

where we have estimated the bias by means of (B-13) and 

the initial estimate C of MSC. The reason for the 

0 in (B-19) is that we are unwilling to accept negative 

estimates of coherence.  (Without the 0 in (B-19) we 
j 

can reduce the bias further at the expense of added 

variance.) The estimated bias and variance of C and 

C are presented in Table B-l.  It is observed that the 
A 

bias of C is significantly reduced.  However, the 

variance is increased.  In fact, the estimated mean 

square error (MSE) (which equals the variance plus the 

square of the bias) is presented in Table B-l and is 

greater for C than for C when C is greater than 0.3; 

the opposite behavior holds when C is less than 0.3. 

(For N=4, C=0.3 is the crossover.) Thus, the choice 
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between the two estimators, C and C, depends on whether 

one is bothered more by bias or MSE. 

For larger N, the crossover value of C, at which C 
A 
A 

or C has less MSE, decreases. For example, at N=8, 

it was observed to occur at 0=0.2. Thus, for practical 

useful values of N (which are usually much larger than 
A 

A A 
1), the estimator C will have less MSE than C over almost 

the whole range of C and will probably be preferred. 

Also, the bias is quite small for large N. The variance 
A 

of C is discussed in the next section. Under the 

assumptions of smooth weighting functions and adequate 

frequency resolution, we will see variance is a more 

significant problem than bias. However, as seen in this 

section, when the assumptions are violated, the bias 

can be a significant source of estimation error. 

B3. Variance of C 

An exact expression for the variance of C is 

Carter (1972a): 

...  A-c)"  . 
N(N + 1) 

-[* 

^3, N, N;N + 2, 1; Cj 

i^ 3F2(2,N,N;N + 1, 1; Cj (B-20) 

(B-20) is plotted in Figuie B-8.  For the special case 

of C=0, 

N(N ♦ 1)   [*)       7(N + 1} 

and 

"N
2 

, for large N and C=0. 

C=0 ,   (B-21a) 

(B-21b) 
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For large N and C^O, 

j V = | cfl-Cj  , (B-22) 

which has a maximum value of 8/27N=0.30/N at C=l/3. 

< Thus the maximum variance is always less than 0.30/N 

3[ regardless of the value of C. Hence, the variance of 
j 

the estimator in the case where C is unknown (but 
I 

nonzero) decreases inversely proportional to N. We 

note, by inspecting (B-20), that for larger and larger 

N, (B-22) becomes a better and better approximation. 

\ Since, in general, we do not know the true value of 

MSC, we select N based on a worst case (maximum variance) 
l     i 

analysis. 

Provided we have used good weighting functions and 

good frequency resolution, the variance has a more 

serious effect than bias. For example, if 01/3 and 

N=100, then the bias of C is less than 0.01, while the 
j 
! standard deviation (square root of the variance) is 
i 

approximately equal to .05. Hence, even when 100 

independent segments are processed, the MSC estimate 

still has significant variability. 

B4.  Receiver Operating Characteristics for a Linearly 

Thresholded Coherence Estimation Detector 

An algorithm for computing the ROC, or the 

probability of detection, PQ, versus the probability 
1 

of false alarm, P-,,   for a linearly thresholded MSC 

estimation detector is presented together with an 
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example of a ROC table (Carter (1976). A recent 

article (Gevlns, Yeager, Diamond, Spire, Zeitlin, and 

Gevins (1975)) presents new results on using linearly 

thresholded MSC estimates to detect biomedical 

phenomena. The desire to establish a threshold below 

which MSC estimates are not presented to a human 

decision maker is an important issue in certain areas, 

such as brain wave analysis and sonar, where the volume 

of sensor da^a is large.  Fcr a fixed amount of 

averaging and a fixed threshold value, E, in the 

absence of a coherent source, there is still a certain 

probability, P-, that an MSC estimate will exceed the 

threshold.  Moreover, although the false alarm rate 

can be reduced by increasing E, to do so decreases Pn, 

when a coherent source is present. How much it 

decreases PD will depend on the strength of the coherent 

source, that is, the true or underlying coherence that 

is being estimated. This section presents an algorithm 

for computing P.. versus Pp for a specified amount of 

averaging and underlying coherence. The pdf of C, 

when C=0, is (from (B-3)): 

p(C|N, C=0) = (N-1)(1-C)(N~2) (B-23) 

The idea for computing ROC curves was suggested 
to the author by R. Trueblood, Naval Undersea Center, 
San Diego, California. 
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I   ! 
i Hence, the probability of false alarm is 

E 
] P-, =• 1 - / (N-l)(l-C)(N"2)dC (B-24) 

F       o 
or 

1  ! 
E = 1 - exp[log(PF)/(N-l)]; (B-25) 

that is, for a specified P« we establish a threshold 
i 

according to (B-25).  Now the computationally more 
1 
j complex question is:  What probability of detection is 
i  i 

achieved for this threshold value E? The answer, for 

a given value of C, is 

i 
i 

PD '  I  p(C|N,C) dC-1 - P(C<E|N,C) ,      (B-26) 

E 

where P(C<E|N,C) is the cdf.  The cdf is given by (B-4), 

namely, 

A       N-2 r J\i 
P(C<E|N,C) SRI  |i-|  ^(-i, 1-N;1;Z) ,  (B-27a) 

where 

Z = EC (B-27b) 

RsE|f^||N (B-27c) r(l-C)lN 1 E[(l-Z) 

«F. is the hypergeometric function. 

The hypergeometric function is, in general, an infinite 

series; however, for negative integers, it is given by 

equation (15.4.1) of Abramowitz and Stegun (1964) as 

,,?,(-*,1-N;1;Z) 'IT (B-28a) 
21 k«0 K 

where 
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1 

k 
(-U (l-N).z 

Tk=~(l)kk! <B-28b> 

Pochhammer's Symbol (z). (p. 256 of Abramowitz 

and Stegun (1964)) 

(,)k"-W • <B-28°> 
and where the Garana function is given by Hankel's 

Contour integral (p. 255 of Abramowitz and Stegun (1964)) 

as 

= [^-t)-V^t]~\ r(z) = ^j>C-t)  e wdt   , |z|«». (B-28d) 

The path of integration starts at +» on the real axis, 

circles the origin in the counterclockwise direction, 

and returns to the starting point.  However, (B-27) 

can be computed without resort to complex integration 

methods (even when the real part of z=0) by noting for 

k an integer that Pochhammer's Symbol, 

(z)k = (z(z+l)(z+2)...(z+k-1) ,  k>0 

C k=0 ,        (B-29) 

is the product of k incrementally increasing terms. 

Now in (B-28b) when Z-EC^O, the first term T0=l and 

the ratio of the k-th to the (k-l)-st term is 

I*  = (k-1-lHk-l+l-N)« (B_30) 
Tk-1        k

2 

Now each term in the sum can be computed from the 

previous term in a simple fashion.  Indeed, the actual 
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computations can be implemented in BASIC on the 

Hewlett-Packard 9830A desk top calculator in less than 

30 lines of code, Figure B-9.  For models of the form 

x(t) = s(t)+n1(t) (B-31a) 

y(t) * s(t+D)+n2(t) , (B-31b) 

where s(t), n1(t), and n„(t) are mutually uncorrelated, 

and when G   (f)=G   (f)=G (f), the SNR is 
nlnl    n2 2    nn 

(B-32) 
G c f)   xic rn ssv '   _  \ xyv ' 
Gnn(f)  1-JC (f) * V xy 

More generally, if 

x(t) = z1(t)+n1(t) 

y(t) = z2(t)+n2(t) , 

where z.(t) is the output of a linear filter H.(f) 

excited by s(t), i=l, 2 and the noises are mutually 

uncorrelated and uncorrelated with the signal, then it 

can be shown that (2-86) 

(B-33a) 

(B-33b) 

Cxy(f)=Csx(f)Csy(f) : 
(B-34) 

that is, the coherence between two receivers is the 

product of the coherence between the source and each 

of the individual receivers for the model (B-33). 

Substituting for the model in (B-33) results in 

zlzl 
(f) Z2Z2 

(f) 

nlnl 
(f) n2n2 

(f) 
xy(f) 

(B-35) 

^-Csx^ll1-^^ 

Now if C (:)=C (f)= C (f) — sx    sy     xyv ' rc (f>ii/: 
xy    J 

, then it follows 
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10 N*8 
20 N1=N-1 

j 30 N2«N-2 
40 A=l-N 
50 C-0.25 
60 PRINT "THIS RUN IS FOR N»"N" AND MSC="C 
70 FOR Fl-0.04 TO 1 STEP 0.04 
80 E«1-EXP(L0G(F1)/N1) 
90 Z-E*C 

f 100 C4«(l-E)/(1-Z) 
110 C2-E*((l»C)/(l-Z))tN 
120 S-0 
130 FOR L-0 TO N2 
140 C3-C4+L 
150 T=l 
160 F»l 
170 IF (L«0) THEN 230 
180 FOR K-l TO L 
190 K1*K-1 
200 T=T*(A+K1)*(K1-L)*Z/(K*K) 
210 F=F+T 
220 NEXT K 
230 S=S+C3*F 
240 NEXT L 
250 P-C2*S 
260 FIXED 3 
27Cf PRINT E;F1;P,1-P 
280 NEXT Fl 
290 END 

Figure B-9 Computer Program to Compute ROC Tables 
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that SNR is 

Gz z (f)Gz z (f) Z1Z1   Z2Z2 
G„ n (/j,)Gn _ (f) 
Vl   n2n2 

1/2 

(B-36) 

Hence, for models of the form of (B-31) or (B-33) if 

we want to look at the 0 dB (or equal SNR case), we 

must select 

10 log10 
l^/c" 

- o , (B-37) 

which implies C=0.25. Now suppose we average for 

only N=8 independent data segments. Then for 

Pp-0.04(0.04)1.00, the thresholds, Pp, cdf and PD 

are given in Table B-2.  If a sufficient amount of 

stationary data exists, effective performance can be 

improved by increasing N; if not, N can only be 

increased at the expense of degrading the frequency 

resolution with its inherent difficulties.  For many 

problems, N=8 will be too small and Pp=0.04 will be 

too large or the performance will be desired for a 

different value (or family of values) of C. Example 

plots are given in Figures B-10 and B-ll; more 

extensive results can be obtained by modifying the 

program, Figure B-9. 
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: 

Table B-2.    Threshold,  P   , cdf,  and Pn for N=8 and C=0. 25 F* D 

\ 

. 

THIS RUN IS FOR N=»8 AND MSC=0.25 

0.369 0.040 0.606 0.394 
0.303 0.080 0.473 0.527 
0,261 0.120 0.389 0.611 
0.230 0.160 0.327 0.673 
0.205 0.200 0.279 0.721 
0.184 0.240 0.240 0.760 
0.166 0.280 0.208 0.792 
0.150 0.320 0.181 0.819 
0.13S 0.360 0.157 0.843 
0.123 0.400 0.137 0.863 
0.111 0.440 0.119 0.881 
0.100 0.480 0.104 0.896 
0.080 fc.520 0.090 0.910 
0.079 0.560 0.078 0.922 
0.070 0.600 0.066 0.934 
0.062 0.640 0.057 0.943 
0.054 0.680 0.048 0.952 
0.046 0.720 0.039 0.961 
0.038 0.760 0.032 0.968 
0.031 0,800 0.025 0.975 
0.025 0.840 0.019 0.981 
0.018 0.880 0.014 0.986 
0.012 0.920 0.009 0.991 
0.006 0.960 0.004 0.996 
0.000 1.000 0.000 1.000 
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Figure B-10 ROC Curves for C-0.25; N«4, 8, 16 
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Figure B-ll  ROC Curves ves for N=8; C-0.1. 0.2, 0.3 



APPENDIX C 

COMPUTER PROGRAM FOR SPECTRAL 
AND TIME DELAY ESTIMATION 

This appendix is divided into two sections.  The 

first section is a brief program description.  The second 

section is a complete listing of the main program and 

subroutines necessary for program execution. 

Cl.  Program Description 

The main program  estimates the auto and cross 

spectral density functions.  These spectral estimates are 

used by the subroutine PRCES to estimate six different 

AML estimates for time delay (See Table 4-1 of the main 

text.)  Facilities with spectral estimation programs 

can simply augment their computations with a call to 

PRCES.  Facilities without spectral estimation algorithms 

will be able to use the programs listed in Section 2 of 

this appendix. The programs listed are intended to be 

general FORTRAN IV programs; they have been compiled 

and executed on the Univac 1108, the Control Data 

Corporation (CDC) 6600 and International Business Machine 

(IBM) 360.  The spectral estimation programs have been 

used for research projects by: Williams (1971), Carter 

(1972a) and (1972b), Brady (1973), Carter, Knapp, and 

Nuttall (1973a), Carter, Nuttall, and Cable (1973), 

Santopietro (1973), Carter and Knapp (1975), and appendix D 

183 
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(»f this dissertation. These research projects were 

conducted entirely on the Univac 1108 and a significant 

program rewrite was undertaken to make the programs 

more transferable from one computer system to another. 

The programs as a complete data processing system 

consist of input, computations and display. We have 

concentrated our rewrite efforts on the computations; 

both the ii.put and display programs are expected to 

contain peculiarities of the particular computer being 

used.  The input and display subroutines are modular 

so that only a minimum rewrite is required to transfer 

the program to another installation. The function of 

the input subroutine LOAD is to load the XX and YY arrays 

with NNN data points.  If the data were stored on logical 

magnetic tape number 6 in binary format the call to 

LOAD could be replaced by the FORTRAN statement 

"HEAD 6, XX(I), YY(I), I = i, NNN". 

The subroutine LOAD listed in Section 2 is used to 

generate synthetic data for a suitable test ctse 

(though not the example for Appendix D).  The display 

subroutine DPLOT is called either:  (1) to initialize the 

plotter, (2) to plot the specified array, or (3) to 

terminate plotting.  The subroutine listed in Section 2 

is written for the Stromberg Carlson 4060 plot system. 

It must be rewritten for other systems.  If a facility 

The programs originally written and documented by 
C.R.Arnold, G.C.Carter, and J.F.Ferrie, have been rewritten 
and tested oy J.C.Sikorski.G.C.Carter and Dr. R.G.Williams. 
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has no plotting system, the subroutine should simply be 

a subroutine which returns; alternatively, the subroutine 

could print the XX array for I=ISTRT to ISTOP.  Thus, 

for use at a new site, two subroutines (LOAD and DPLOT) 

need to be rewritten. 

The main program also calls (in addition to 

DPLOT and LOAD):  HICMP, FFT, LIST, LIST2, PRCES, and LREMV. 

The subroutine LREMV computes (and optionally removes) 

the linear trend and dc for the input time waveforms. 

These computations are performed for every time segment 

and are printed out by the main program as an aid to 

detecting nonstationarities or digitizing errors.  The 

subroutines LIST and LIST2 are used to print out (list) 

results.  The subroutine FFT computes the FFT (see, for 

example, Cooley-Tukey (1965))_ coded and listed by 

Singleton (1969).  Singleton's mixed radix algorithm has 

been shown by Ferric and Nuttkll (1971) to ho significantly 

faster (though less accurate) than other proposed FFTs. 

Singleton's 600 line FORTRAN subroutine can be replaced 

with shorter programs (see, for example, p. 332 of 

Oppenheim and Schäfer (1975)).  Because of the availability 

of Singleton's listing in the literature, the FFT is nol 

listed here.  Note that the subroutine PRCES and tho main 

program prosume that the FFT output array is subscribed 

from 1 to NPFFT and not from 0 to (NPFFT-1).  The 

subroutine PRCES implements the six AML processors 

given in Table 4-1.  The subroutine PRCES cnlls on the 
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subroutines FFT and DPLOT (already discussed). 

Singleton's subroutine performs a mixed radix FFT; 

that is, the number of data points do not need to be 

integer powers of 2 such as 512, 1024, 2048 and 4096 

but can have factors of 2's, 3's, and 5's, such as 

1000, 1500, 2000 and 3000.  Numbers which can be 

factored into 2's, 3's, and 5's only are called highly 

composite.  Given the FÜRTRAN variable NNN, the sub- 

routine HICMP finds the highly composite number closest 

to (but greater than or equal to) NNN. The output of 

HICMP is NEWNNN.  For some applications, the program 

user will want NEWNNN to be twice as large as NNN; 

this is because the main program fills the data arrays 

with zero from NNN + 1 to NEWNNN.  Such zero filling 

is (theoretically) required to inhibit the effect of 

circular convolution; in practice, though, (with 

stochastic data) zero filling does not warrant the added 

(doubled) computational cost.  If it is desired, zero 

filling can simply be achieved by adding one line to 

HICMP:  "NEWNNN = 2*NEWNNN" . 

In addition to calling several critical subroutines 

the main program performs computations necessary to 

estimate the spectral characteristics of the two wave- 

forms under investigation.  The computations performed 

pre briefly outlined in four major steps in appendix A. 

Wh^n the two input waveforms are complex, one FFT of 

each waveform segment is required as specified in 
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Appendix A. However, in most (though not all) practical 

data collection facilities, the input waveforms are real 

(not complex). When x(t) and y(t) are real, one FFT of 

the complex waveform x(t) + jy(t) can be computed and 

quickly be manipulated to form the FFT of x(t) and the 

FFT of y(t).  (See p. 333-334 of Oppenheim and Schäfer 

(1975), see also p. 271-293 of Raoiner and Rader (1972).) 

These observations, combined with (A-3) give rise to 

the FORTRAN statements used to estimate the spectral 

characteristics of x(t) and y(t). The application of 

this theory reduces the computation time for two real 

waveforms by a factor of two. The linal comment 

necessary before presenting the computer listings is to 

describe the input FORTRAN variables. NNN is the number 

of data points per segment.  ISR is the integer sampling 

rate (Hz). NDSJP is the number of disjoint segments 

in the total time waveform.  SFX and SFY are scale 

factors used to adjust tne (voltage) level of the input 

waveform to correct for frequency independent attenuations 

in the data collection and digitizing process.  (When no 

correction is desired, the user sets SFX=SFY=1.0.) 

when the user desires the spectral estimates to appear 

3 dB higher, he sets SFX=SFY=2.0.) With these fivo 

sample inputs, the input time data are processed. The 

next section gives a complete program and subroutine 

listing. 
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APPENDIX D 

EXAMPLE COMPUTER RUN FOR SPECTRAL AND 
TIME DELAY ESTIMATION 

Theoretical equations have been derived in 

Chapter 3 for ML estimation of time delay.  A computer 

program to achieve an AML estimate of delay is given 

in Appendix C.  Tha purpose of this chapter is to 

describe four example cases which were run to sub- 

stantiate the theory and validate the computer program. 

One computer run was made for each of the cases  Only 

one of the runs will be explicitly reported here.  In 

all of the four cases studied, the true delay was 

set equal to zero (without loss of generality).  Further, 

the signal attenuation was set equal to unity so that 

(3-1) becomes 

(D-la) xx(t) = s(t)+nx(t) 

x2(t) = s(t+D)+n2(t) (D-lb) 

D = 0 . (D-lc) 

Our desire is to see whether (and "how well") we can 

estimate the (assumed unknown) parameter D, given a 

T second observation of x.(t) and x2(t). The variance 

of the ML processor (as discussed after (3-34)) depends 

on the particular signal and noise spectral characteristics 

(in particular, C-2(f)).  Moreover, the variance of the 
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delay estimate can only be empirically determined by 

resort to numerous (expensive) computer runs.  We have 

not done that here (but have suggested further work in 

this area (Chapter 6)).  We have, however, made four 

computer runs for the data cases synthesized by 

Figure D-l.  As shown in the figure, the signal spectrum 

has two nonzero frequency bands.  The bands are 10 Hz 

wide centered at 5 and 50 Hz.  Each of the five filters 

represented in Figure D-l is the cascade of two sections, 

each with a 48 dB/octave roll off.  The noise generators 

generate white noise.  Details of the hardware are the 

same as described on pages 71-72 of Carter (1972a). 

The actual data generation reouired less hardware than 

shown in Figure D-l, but the simulation is easier to 

visualize by studying Figure D-l and is closer to what 

would be done in a real time simulation of the type 

suggested in Chapter 6.  In our experiment, we adjust the 

SNR by adjusting the gain in Figure D-l. 

The digital outputs of the data synthesized are 

stored on magnetic tape for use by the computer program 

(Appendix C).  Longer observation time is achieved by 

reading more data from the magnetic tape.  In the four 

example cases, the ML processor output was examined 

for two different sipnal levels and two different 

averaging times T.  Expect for absolute SNR level all 

four example cases had the same signal and the same 

noise spectral densities.  As expected, when the SNR 
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was low, more averaging time was required to extract 

a "good" delay estimate; this behavior is predicted 

by (3-34).  In particular, of our four cases, the low 

SNR and short averaging case resulted in unusable delay 

estimates. The reason for this was apparent upon 

inspecting the coherence estimates used to approximate 

the true coherence.  As predicted in appendix B with 

short averaging times (that is, small N), we were unable 

to detect a low coherent source. 

This happened to our on3 trial at low SNR and short 

averaging; however, by increasing the averaging time, 

an acceptable time delay estimate was obtained. We 

were able to increase the averaging time (essentially 

without bound) since the example cases were using 

laboratory data. 

The case which we will report in detail is the 

high-coherence, short-averaging case.  In particular, 

the gain in Figure D-l is adjusted so that C"0.6 in the 

frequency bands with signal power and C*0 in the other 

bands.  The characteristics of x.(t) and x2(t) were 

estimated from 8 seconds of data with 16 Independent 

segments (each of 1/2 second duration, that is, 2 Hz 

resolution). FFTs of 600 samples (1/2 sec times 1200 

samples/sec) can be performed using the fast mixed 

radix FFT of Singleton (1969). 

The characteristics of the noise generators in 

Figure D-l were essentially identical. Thus, for the 
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model (D-l), G   (f)*G   (f),Vf.  The estimates of 
11    x2 2 

G   (f) are depicted in Figure D-2.  The estimates of 
xlxl 

G   (f) were extremely similar and are not repeated. 
X2X2 

The extent to which x.,(t) and x„(t) are similar is 

measured by the MSC estimate in Figure D-3.  Since the 

CC and delay D depend upon the phase, the phase estimates 

are depicted in Figure D-4.  The slope of the phase 

estimates is an important indicator of delay in those 

frequency bands where the MSC is strong (namely, 0-10 Hz 

and 45-55 Hz).  Using the algorithm discussed in 

Chapter 3 and the estimation techniques of appendix A 

implemented in appendix C, we havo obtained the delay 

estimate given in Figure D-5.  From Figure D-5 we see 

that the GCC with ML weighting peaks very close to the 

true value of delay, namely, D=0.  A blowup of Figure 

D-5 given in Figure D-6 shows that, the peak is within 

10 msec of the true value.  Clearly, the estimation 

technique proposed is a viable method for estimating 

time delay. 

Dimensionally the slope is the phase angle in 
radians divided by the frequency in radians per sec. 
Thus the slope of the phase is measured in seconds. 
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